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The search for simple principles that underlie the spatial structure and dynamics

of plant communities is a long-standing challenge in ecology" . In particular, the
relationship between species coexistence and the spatial distribution of plantsis
challenging to resolve in species-rich communities” . Here we present a comprehensive
analysis of the spatial patterns of 720 tree species in 21 large forest plots and their
consequences for species coexistence. We show that species with low abundance
tend to be more spatially aggregated than more abundant species. Moreover, there
isalatitudinal gradient in the strength of this negative aggregation-abundance
relationship that increases from tropical to temperate forests. We suggest, in line with
recent work', that latitudinal gradients in animal seed dispersal" and mycorrhizal

associations**

may jointly generate this pattern. By integrating the observed spatial

patterns into population models®, we derive the conditions under which species can
invade from low abundance in terms of spatial patterns, demography, niche overlap
and immigration. Evaluation of the spatial-invasion condition for the 720 tree species
analysed suggests that temperate and tropical forests both meet the invasion
criterion to a similar extent but through contrasting strategies conditioned by their
spatial patterns. Our approach opens up new avenues for the integration of observed
spatial patterns into ecological theory and underscores the need to understand

the interaction among spatial patterns at the neighbourhood scale and multiple
ecological processesin greater detail.

Species-rich plant communities such as tropical forests have been
investigated by ecologists for decades, but explaining their high spe-
ciesrichness remains a challenge for ecological theory' ¢3¢, Although
numerous studies have been devoted to this issue, mechanistic con-
nections among features of plant communities and species coexist-
ence are incompletely understood’®. For example, a key feature in
forestsis the spatial aggregation of tree species, which has long been
used to infer mechanisms that contribute to coexistence . This is
because aggregationis related to ecological processes such as negative
conspecific density dependence*®%, dispersal limitation®>*, mycor-
rhizal associations™?* and habitat association*%., Conspecific spatial
aggregation Qisusually defined as the average density D of conspecific
trees in neighbourhoods around individual trees of the same species
divided by the mean tree density A of the species in the forest plot?*%,
Hence, Q describes the extent to which trees of the same species tend
to occurinspatial clusters. Several theoretical and observational stud-
ies suggest that conspecific aggregation is related to species abun-
dance, whereby species with lower abundance show higher levels of

aggregation®22¢28 However, other studies have reported only weak
relationships between aggregation and species abundance® (Supple-
mentary Text). Nevertheless, arelationship between aggregation and
abundance could have important consequences for the maintenance
of highspecies richness. This is because recent theoretical work”® has
indicated aconnection between conspecific aggregation and therare
species advantage required for coexistence.

Different aggregation-abundance relationships are possible. At
one extreme, when conspecific clusters form mostly near adults (for
example, owing to short-distance dispersal’®*¢ and/or mycorrhizal
associations'> ™), the density D of conspecific trees in the neighbour-
hood of individual trees will be similar for species with low and high
abundance, but species withlower abundance will have fewer clusters
(compare Fig. 1a and Fig. 1b). Thus, aggregation (that is, Q = D/1)**%
increases if abundance (and therefore the mean tree density 1)
decreases. At the other extreme, when local clusters are created away
from conspecific adults® (for example, owing to clumped animal seed
dispersal (zoochory) or canopy gaps*°3), fewer seeds will reach the
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Fig.1|Different responses of conspecific spatial aggregation to changesin
abundance. a, lllustration of asimulated pattern of aspecies withabundance
N=500individualsina25-haareawith mean neighbourhood density

D=0.0116 trees per m?, mean tree density A= 0.002 trees per m*and aggregation
0=D/A=5.8(coloursrepresent different clusters ofindividual trees of the same
species).b, Entire clusters of the patterninawere removed (N=100). Through

cluster locations if the species has lower abundance. Consequently,
the neighbourhood density D willbecome proportional to abundance
and therefore aggregation Q becomes independent of abundance
(compare Fig.1awith Fig. 1c).

Given the links between conspecific aggregation, negative density
dependence and coexistence’ *?, the aggregation-abundance rela-
tionship may be related to the latitudinal diversity gradient, which is
proposed tobe driven by ecological, evolutionary, regional or historical
effects*. Here we conduct acomprehensive analysis of both how spatial
neighbourhood patterns of trees derived from large forest inventories®
and the relationship between aggregation and abundance change
with latitude. We propose underlying ecological mechanisms and
integrate our results into mathematical theory toinvestigate how the
aggregation-abundance relationship may affect the rare species advan-
tage and thereby species coexistence (Box 1).

Although aggregation can be defined in various ways!*20252%3
(Extended Data Fig. 1), we derive measures of spatial patterns from
established approaches®***® that model the effect of neighbours on the
performance of individual plants (Box 1). This links the competition of
individual trees with the dynamics of species at the community scale.
Weillustrate our new theory using the example of neighbourhood com-
petition, in whichtree survivalis reduced in areas of high tree density
by competition for space, light or nutrients®, or through predators
or pathogens™,

Alatitudinal trend in aggregation

Using dataon 720 focal species in 21 temperate, subtropical and trop-
ical forest plots with sizes of 20-50 hafrom aglobal network of forest
research plots (CTFS-ForestGEO)® (Extended Data Table 1), we found
that species with lower abundance tended to be more aggregated than
species with higher abundance (Fig. 2). Notably, when describing the
relationship between observed aggregation kz and abundance N for
eachforestplotbyapowerlawk}=a Ny¢ (refs. 21,27,28) (Fig. 2a,b), the
exponent e followed a marked latitudinal gradient (Fig. 2c and Extended
Data Fig. 2). Tropical forests showed a weak negative relationship
between aggregation and abundance (that is, exponent values close
to zero; Fig.2aand Extended Data Fig. 3a-f). By contrast, in temperate
forests, species with low abundance showed generally high aggrega-
tion, and aggregation strongly decreased with increasing abundance
(that is, exponent values mostly below -0.58; Fig. 2b and Extended
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this step, the neighbourhood density was approximately maintained
(D=0.0107), but because Awasreduced by afactor of1/5, aggregationincreased
approximately Stimes (Q =26.7). ¢, Individuals of the patterninawere randomly
removed (N =100). Through this step, DandAwerereduced by afactor of4.93
and 5.0, respectively, which approximately maintained aggregation (2=5.9).
We estimated D and Q for 10-m neighbourhoods around the focal individuals.

Data Fig.3n-u). In contrast to conspecifics, heterospecific associations
were not related to abundance (except for some weak correlations in
temperate forests; Extended Data Fig. 4).

The latitudinal gradient in the relationship between conspecific
aggregation and abundance (Fig. 2c) and the absence of such arela-
tionship for heterospecifics (Extended Data Fig. 4) suggested that
simple principles may drive the complex spatial structure and dynamics
of plant communities across latitudinal gradients. We also observed
similar latitudinal gradients in the proportion of species that show
mostly animal seed dispersal" and in the proportion of species with
anarbuscular mycorrhizal (AM) association'* (Extended Data Table1).
Temperate forests are usually dominated by ectomycorrhizal (EM) tree
species, whereas tropical forests are dominated by AM tree species™.

For the combination of the two traits (that is, zoochory and AM
association), there was an even stronger latitudinal gradient (Fig. 3a),
which suggested an explanation of the observed latitudinal gradient
inthe aggregation-abundancerelationship (Fig. 3b). Species-specific
EM fungi facilitate conspecific recruitment by forming a physical
sheath around young feeder roots'**° and counteracting negative
competitor-driven or pathogen-driven effects™ ™, thereby leading to
increased aggregation. Therefore, seed dispersal close to conspecific
adults should be advantageousin temperate forests, where many spe-
cies show an EM association. By contrast, seed dispersal farther away
from conspecific adults should be more advantageous for AM trees,
given that an AM association provides less protection against com-
petitors or pathogens that accumulate near conspecifics than an EM
association*°. Insummary, we propose that the key mechanism that
leads to the different responses of aggregation to abundance is the
way thatlocal clusters emerge with respect to conspecific adults. That
is, in tropical forests, mechanisms such as animal seed dispersal lead
to the emergence of clusters away from adults, whereas in temperate
forests, clusters form close to adults® (Fig. 1).

Regardless of the ultimate mechanisms that generate it, the system-
atic change in the relationship between aggregation and abundance
with latitude (Fig. 2¢) has important implications for coexistence
dynamics and theory. Stable coexistence requires that the abundance
of anewly invading (or an almost extinct) species increases>’ (that
is, ararespeciesadvantage). Common non-spatial models that feature
this invasion criterion ignore the possibility of a negative aggrega-
tion-abundance relationship by assuming that the invading species
does not suffer from conspecific competition®. This assumption was



Box 1

Crowding indices, spatial patterns and their link with macroscale

dynamics

Following earlier work on neighbourhood crowding indices®*?, we

assumed that the survival of an individual (red square) depends on

its conspecific (red) and heterospecific (blue) neighbours within a
distance r (blue shaded area). For an individual o of the focal species
f, the crowding index C,; counts all conspecifics (index m) within
distances r, but weights them by their distance d,,,, (equation (3)),
assuming that distant neighbours compete less (n;is the number of
neighbours of individual o of species f within distance r). The crowding
index H,; does the same with all heterospecifics (equation (4)), but the
crowding index I weights the n; neighbours of species i additionally
by their relative competition strength /B, (equation (5a)), where 3
is the neighbourhood-scale competition coefficient between species
fand i, which gives the negative impact of one neighbour of species i
on the survival of individuals of the focal species f. Total crowding

Coi + I = Coe+ BiH s (equation (5a)) then determines the survival s, of
the focal individual®® (equation (6)).

We found that the population averages C; and I; of the individual
crowding indices determine the average survival rate §; of species f
(equations (6) and (9)), weighted by coefficients y;; and y;,
respectively, which arise through the nonlinear averaging of the

survival s,; over all individuals o of the focal species®. To incorporate
the average survival rate into a model of community dynamics
(equation (1)), we decompose C;, Hy and I; into species abundance
N;and measures of spatial patterns (equations (3), (4), (5b) and (10)),
where J =3, N; is the total community size. Conspecific aggregation ki
describes the extent to which trees of the focal species (subscript ff)
tend to occur in spatial clusters and heterospecific association kg,
describes the extent to which heterospecifics are spatially associated
with trees of the focal species (subscript fh). We define ki and kg, by
dividing the average crowding indices C; and H; by their expectation
in the absence of spatial patterns?®* (square brackets in equations (3)
and (4)), where c is a scaling factor (c=2mr/A; Methods) and A is the
area of the plot.

The quantity B, (defined in equation (5a)) is the average competitive
strength of one heterospecific neighbour relative to that of one
conspecific. We compared two scenarios for the neighbourhood-
scale competition coefficient 3;: one in which conspecifics and
heterospecifics compete equally (B8;/B+=1), and one in which
phylogenetic similarity is a proxy for B/« because it is difficult in
practice to estimate 3;/B; for species-rich forests.

Neighbourhood scale Population level Equation
n 1 -
Conspecific Coy = Z,lem Cr = Kkfp [c Nf] ()}
n 1 =5 _
Heterospecific ~ Hor = Xizf Zm=1a Hy = kep [c (J — Nf)] @)
Niche Iof = B I_/H_
. n; Bfi 1 = (58.)
differences DI Zm:lﬁ_ﬂdom =
I = Jegn By [e (J = Np)] ey
Survival Sof = sfe‘ﬁff(cof“of) &= gfe—ﬁff(ych'f+Vf11_f) ®)

met in our data for tropical forests, where aggregation was weakly
related to abundance (Fig. 2a,c). In this case, mean conspecific neigh-
bourhood densities C; were almost linearly related to species
abundance N, (as constant aggregation kf*f ledto G;= ckf*fo*; Box 1
equation (3); Fig.1c). However, anincrease in aggregation with decreas-
ing abundance, as observed for temperate forests (that is, higher lati-
tudes; Fig. 2b,c), challenges the common assumption of invasion
analysis. This is because local conspecific neighbourhood densities
were almost independent of abundance, given that the exponent of
the aggregation—-abundance relationship approached values of -1
(from C;=ckpN} and k= a/Nj follows C;=ca; Box 1 equation (3);
Fig.1b). Thus, individuals of species with low and high abundance expe-
rience similar degrees of conspecific competition. Consequently,
existinginvasion analysis can break down’. Spatial aggregation of trees
is therefore closely linked to species coexistence, and we need new
theories to determine whether and under which circumstances species
with low abundance are likely to increase’.

Including aggregationinto the theory

Atheorythatdescribes how the response of conspecific aggregationto
abundanceinfluences species coexistence requires adynamic popula-
tion model that relates competition at the population level to spatial
patterns in the neighbourhood of individual trees. Here we derived

suchanapproach®, which incorporated information on spatial patterns
at the scale of individual trees provided by the ForestGEO datasets®.
We exemplified our theory using a simple model, which uses the fol-
lowing assumptions: (1) reproduction is density-independent’; (2)
survival of individual treesis reduced in areas of high local tree density,
as described by neighbourhood crowding indices** (Box 1); and (3)
immigration may occur at a constant rate:

N, =N,
'f t+At 'fit _ o
A T WNEIN
(1a)
rfo’t -|1- Sfexp(_ﬂﬂpr(Nf't)) Nf,[+ Ufrf
Reproduction

Survival Immigration

Here N, is the abundance of the focal species fat time ¢, the time
interval Atisthe 5-year censusinterval, /Tf(Nf,t) isthe per capitapopu-
lation growth rate of species fas a function of species abundance N,
syis a density-independent per capita background survival rate, ryis
the per capitarecruitmentrate, Bis the conspecific neighbourhood-
scale competition coefficient and v;is a parameter that governs the
magnitude of a constant immigration rate ryv,(ref. 41). W{N,,), the
fitness factor*, is the average of the sum C,;+ /,,of conspecific and
heterospecific neighbourhood crowding taken over all individuals o
of afocal species f(Box 1, equation (6)) and incorporates information
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Fig.2|Latitudinal variationin the scaling of conspecificaggregation with
abundance. a, Aggregation values for speciesinatropical forest (Mo Singto
(MST) plot) plotted over their respective abundances per ha (dots) and fitted
linear regressionbetween In(kg) and In(Ny) (line). b, Same as a, butfora
temperate forest (Donglingshan (DLS) plot). ¢, Latitudinal gradientin the
exponent of the aggregation-abundance relationship for the 21 forest plots.
Toshowtheoveralltrendinthe data, wefitalinear regression. Aggregationis
definedinBox1equation (3) and was estimated for neighbourhoods of 15 m. We
usedinouranalyses 720 species with atleast 50 large trees® (diameter at breast
height >10 cm). For plot characteristics, sample sizes and plotacronyms see
Extended Data Table 1. Circles of subtropical plots are marked with ared edge.

onspatial patterns, abundance and the aggregation-abundancerela-
tionship into our model (equations (11b) and (11f)). To keep our exam-
ple model simple, we did not consider tree size.

We used a spatially explicit and individual-based implementation of
ourmodel®,inwhich spatial patterns (measured by k7, k) emerged as
aconsequence of spatially explicit recruitment of offspring and nega-
tive density dependence (Methods). Changing only the way offspring
are placed relative to conspecific adults led to the range of observed
exponents of the aggregation-abundance relationship (Extended Data
Fig.5). When most offspring were placed close to their parents, locally
high adult densities were maintained through the continuous placement
of new individuals into these clumps, which was controlled through
subsequent thinning due to density-dependent mortality. This mecha-
nism led to an aggregation-abundance relationship similar to that of
temperate forests®, and we found that the community cannot be invaded
by a species at low abundance (Extended Data Fig. 5a,f). However, if
fewer recruits were placed close to their parents, then the dependence
of aggregation on abundance was weaker (Extended Data Fig. Sb-e).
Consequently, a species at low abundance caninvade because it expe-
riences reduced competition (that is, lower values of total crowding
?f + ﬁf) (Extended DataFig. 5j,0). This rare species advantage emerges
asaconsequence of a positive fitness-density covariance®*?if aspecies
atalower abundance is surrounded by a lower number of conspecific
neighbours (that is, lower values of Cy; Extended Data Fig. 50,1).

By taking amean-field approach® (thatis, diffuse competition at the
community scale®) and assuming zero-sum dynamics? (that is, the total
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number of trees is fixed; Extended Data Fig. 5f-j), we decoupled the
multispecies model (equation (1a)) by means of the fitness functions

b
N Y
w | Ve . .
WyNs,) = ¢ (kﬂ“_kfh)[N}j + K Npe + CBeKpy = Ny o)

Heterospecific

(1b)

Conspecific crowding crowding

where k}‘f, kf*h, Nfand/*are the observed aggregation, heterospecific
association, abundance and total community size, respectively, byis
the exponent of a corrected power-law aggregation-abundancerela-
tionship (equation (12)), Bis the average competitive strength of one
heterospecific neighbour of species frelative to that of one conspecific
and cis ascaling factor (Box 1). We parameterized our mathematical
model (equations (1a) and (1b)) by using information from our large
forest plots. All parameters of the model, and the measures of spatial
patterns, were species-specific. However, given that we had only limited
information, we used the same parameter value for all species for sev-
eral parameters (thatis, r;, srand by). For the estimation of B we assumed
that the observed abundance values were close to equilibrium (see
Methods for details).

An expanded spatial-invasion criterion

The effect of aggregation on coexistence can be analysed by using an
invasion criterion*’. Aninvading (or almost extinct) species willbe able
to increase from a low abundance if its per capita population growth
rate (equation (1a) and Fig. 4a) is sufficiently positive (that is, arare
species advantage). Our spatial-invasion criterion therefore requires
that the (scaled) per capita population growth rate /Tf(NS)/rf should
have at alow abundance N; at least a value § larger than zero (equa-
tion (17a)). For the case in which spatial patterns are the only mechanism
tofacilitate coexistence (thatis, noniche overlap orimmigration; B,=1,
vr=0), we obtained the simple invasion criterion

b+l
N

1+pf

5 @

where N;is the smallinvasion abundance (here N, =50r10) and Nf the
observed abundance, byis the exponent of the corrected aggregation-
abundance relationship (equation (12)), and the quantity p,= B, (k/
(k- k3))(J*/Nf) (equation (17d)) is a risk factor, as larger values of p;
make it more difficult to meet the invasion criterion. The risk factor
combines the main influence of niche differences (B), spatial pattern
(kfand k3) and relative abundance (N#//) ontheinvasion criterioninto
asingle compound index.

Equation (2) suggests that temperate and tropical forests use contra-
sting strategies to fulfil the invasion criterion (Fig.4c). Tropical forests
showed smaller negative values of the exponent b,that allow them to
have larger values of therisk factor, whereas temperate forests showed
smaller values of the risk factor but larger negative values of the expo-
nentb, Moreover, less abundant species (thatis, larger values of N,/N}
in equation (2)) must show, across all latitudes, larger aggregation k5
than more abundant species to produce smaller values of the risk factor
(theredversusblacklineinFig.4c). Moreover, larger niche differences
(thatis, Bydecreases) in combination with larger aggregation k# enhance
coexistence (equations (18) and (19)). We anticipate that this effect would
be particularly important for the persistence of low-density species.

To assess the order of magnitude of the effects of spatial structure,
niche differences and immigration on the per capita population growth
rate, we investigated four scenarios (Table 1). Coexistence was gener-
ally facilitated to a similar extent in the analysed forest plots by the
observed spatial patterns (Table1, Fig.4b and Extended DataFig. 6a,e).
For example, model results for scenario 1 (without niche differences
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Fig.3|Latitudinal variationin the proportion of species showing mainly
animalseed dispersaland AM association. a, Latitudinal gradientinthe
proportion of species per plot that show both mostly animal seed dispersal and
AM association. b, Relationship between the exponent of the aggregation-
abundancerelationship and the proportion of species per plot that show mostly
animal seed dispersaland AM association for the 21 forest plots. For plot

and without immigration) produced at a small abundance of 10 indi-
viduals mean-scaled per capita growth rates of 0.036, 0.043 and 0.05
for tropical, subtropical and temperate forests, respectively (Table1).
Note that these values produced stable dynamics in our simulations
(Extended Data Fig. 5i,j). Species in temperate forests tended to show
slightly higher values of the scaled per capitagrowthrateson average
compared with tropical forests (Table 1and Fig. 4b).

Using expanded versions of the model, adding niche differences
(Br<1) and/or a small constantimmigration rate (v,= 0.1) (Table 1) led
to further increases in the scaled per capita growth rates of similar
magnitude. Although the effect of a smallimmigration rate on the per
capitapopulation growthraterapidly declined with increasing species
abundance (Table 1and Extended Data Fig. 6g,h), the effect of spatial
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characteristics, sample sizes, raw data, plot acronyms and relationships with
animal seed dispersaland AM association, see Extended Data Table 1. To outline
the overalltrend in the data, we fita polynomial regression of order 2inaand
wefitalinear regressioninb. Most species showed either AM or EM associations.
Coloureddiscsindicate the example plots presented in Fig.2a,b.

patterns and niche differences persisted for larger abundance values
(Extended Data Fig. 7).

Discussion

Developing anapproach thatintegrates the observed spatial patterns
ofindividual treesinforests with ecological processes into mathemati-
cal theory is a considerable challenge. Here we presented a unified
framework that combines spatial point process theory with popula-
tion models to derive expectations about how interactions between
different spatial patterns and processes affect the ability of invading
species to expand. The framework relies on spatial patterns, such as
conspecific aggregation and heterospecific association, which link
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Fig.4|The per capitapopulationgrowthrate and the spatialinvasion
criterion.a, Thescaled per capita population growthrate /le(Nf)/rf forfive
example species of different forests plotted over abundance N. We scaled
}Tf(Nf)with thereproductionrater, to obtain aquantity thatis comparable
among forest plots. The speciesinclude Castanopsis acuminatissima of the
MST plot (b;=-0.3), Ficus langkokensis of the Xishuangbanna plot (b,=-0.52),
Caryatomentosa of the Tyson Research Center plot (b,=-0.75), Ostrya
virginiana of the Wabikon plot (b;=-0.92) and Maackia amurensis of the
Changbaishan plot (b,=-1.08). We also show the theoretical values of)T}(Nf )rs
for b= 0 (black) and -1(grey). b, Same as a, but for the averages over all focal
speciesintropical, subtropical and temperate forests. ¢, Trade-offbetween the

Abundance N; of species

Exponent b,

exponentbyof theaggregation-abundance relationship (x axis) and the maximal
risk factor p,,., (equation (19)) that just satisfies the spatial invasion criterion
(equations (2) and (18)): temperate forests (smaller b)) show smaller risk factors
prthantropical forests (larger value of by). The lines show p;,. for asmallscaled
growthrate 6=0.0035 (see equation (19)) and example ratios of N /N = 5/50
(red)and N/Nf=5/5,000 (black), where N, (=5) is the small invasion abundance
and Nf(=50and 5,000). The circles show for each species therisk factor p,and
the cyandiscs mark the 33 out of 720 species that do not satisfy the criterion
(19 species withp,>350are not visible). The dataare from scenario 1(thatis, no
niche differences, noimmigrationand observed equilibrium abundances)
(Extended Data Table1).
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Table 1| Effects of spatial structure, niche differences and immigration on scaled per capita population growth rate

Scenario 1, spatial patterns, no niches

Scenario 2, spatial patterns and niches

Parameters Ne=1,v;=0 N,=10, v;=0 N,=32, v=0 N,=1, v;=0.1 N,=10, v,=0.1 N,=32, v,=0.1

All forests 0.049 0.041 0.041 0.090 (0.042) 0.078 (0.037) 0.063(0.030)
Tropical 0.042 0.036 0.036 0.091(0.050) 0.080 (0.044) 0.064 (0.035)
Subtropical 0.050 0.043 0.043 0.078 (0.027) 0.068 (0.025) 0.056 (0.021)

Temperate 0.067 0.050 0.050 0.114 (0.047) 0.091(0.041) 0.074 (0.036)
Immigration® 0.1000 0.010 0.003 0.1000 0.010 0.003

We show the average values of the scaled per capita population growth rate Xf(NS)/rf, taken separately for all species in tropical, subtropical and temperate forests and for small abundance
values of N,=1,10 and 32 individuals. Scenario1assumes no niche differences (8;=), whereas scenario2 includes niche differences (8;<4). The numbers in parenthesis in scenario2 show
the increase in Xf(NS)/rf due to niche differences, and the row ‘lmmigration’ shows the increase due to immigration. Note that the corresponding model without spatial patterns, niches and

immigration shows Xf (Ng)=0.
“The increase in A¢(Ns)/rs due to immigration with v,=0.1.

neighbourhood-scale competition of individual trees with species
dynamics at the community scale. Our theory led to a closed-form
expression for the per capita population growth rate of species as a
function of spatial patterns, demography, niche overlap and immi-
gration (equations (1a) and (1b) and (13)), which facilitated a general
understanding of spatial coexistence in forests (equations (2) and (18)).

Severalimportant ecological insights resulted from this new theory.
First, we showed that the spatial patterns found in forests have in gen-
eral a stabilizing effect under neighbourhood competition’, as they
substantially increased the per capita population growth rate of an
invading species compared with avalue of zero for the non-spatial case
(Table1). This result challenges the prevalent perspective that spatial
patterns alone cannot promote coexistence***, However, this asser-
tion arises from the assumption of previous models”******¢ that place
recruits close to their parents, which leads to destabilizing negative
aggregation-abundance relationships (with exponent values close
to-1) (Fig.1and Extended Data Fig. 5). Our results therefore highlight
the crucial role that spatial patterns and the aggregation-abundance
relationship have in shaping coexistence outcomes.

Second, our spatial theory suggests that temperate and tropical
forests both satisfy the spatial invasion criterion required for coexist-
ence to a similar extent (Table 1), but they do so in contrasting ways.
Tropical forests are not subject to destabilizing negative aggregation—
abundance relationships (thatis, they show low negative values of the
exponent b) owing to the combined effect of animal seed dispersal and
an AM association, but show higher values of the risk factor p,(Fig. 4c
and Extended Data Fig. 8b,c). By contrast, temperate forests show a
stronger negative dependency of aggregation on abundance, but this
disadvantage is outweighed by lower values of the risk factor through
higher relative species abundance and/or stronger aggregation facili-
tated by an EM association' (Fig. 4c and Extended Data Fig. 8a,c,d).

Third, the negative aggregation-abundance relationship found here
for temperate forests challenges the implicit assumption of common
non-spatialimplementations of the invasion criterion'’ that an invading
species does not suffer from conspecific competition’® (such as shown
inExtended DataFig. 5t). Inviolation of this assumption, if aggregation
iscaused by short-distance dispersal, mostindividuals willbe close toa
conspecificcompetitor, evenifthe species abundance is low (Extended
DataFig. 5p). This mechanism leads to conspecific population-level
competition coefficients that are not constant as commonly assumed®,
butincrease with decreasing abundance (equation (11c)). We developed
anew theory that overcame this issue and enabled us to determine
whether and under what circumstances the abundance of invading
species are likely to increase in a spatial context (equation (18)). We
propose that similar criteria can also be derived for other population
models (Supplementary Text).

Our spatial analysis of 21 large forest plots revealed a latitudinal
gradientin the strength of the relationship between conspecific aggre-
gation and abundance (Extended DataFig. 2d). Our model simulations
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(Extended DataFig. 5) provided evidence that this latitudinal gradient
isrelated to seed dispersal, and on the basis of our correlation analysis
(Fig.3), we propose thatitarises as aninteraction between animal seed
dispersal™ and mycorrhizal associations'>**. Nonetheless, given that
multiple ecological variables correlate with latitude, other mecha-
nisms could contribute to this pattern. However, arecent global study®
outlined the joint evolution of mycorrhizal symbiosis, seed disper-
sal and pollination in tree species because they each interact in ways
that are mediated by the spatial structure of tree populations. Their
results support our dispersal-mycorrhiza hypothesis, whereby most
AM-associated trees have biotic seed dispersal and biotic pollination,
with long dispersal distances, whereas most EM-associated trees have
abiotic seed dispersal and wind (abiotic) pollination mode, with shorter
dispersal distances™. The dispersal-mycorrhiza hypothesis there-
fore provides an extra dimension to the study of negative conspecific
density dependence. Anintegrated understanding of the interacting
effects of animal seed dispersal and mycorrhizal associations will be
fundamental to our understanding of the forces that structure forest
diversity and composition.

The simple spatial invasion criterion corroborated our hypothesis
that simple principles may drive the complex spatial structure and
dynamics of plant communities across latitudinal gradients, but this
structural simplicity hides substantial biological complexity. Moving
forward, we suggest that methods that model the forces that structure
forest diversity and composition should incorporate mechanistic repre-
sentations of the processes that can potentially drive the aggregation-
abundance relationship. Here we showed that they may include seed
dispersal™*® habitat association?* and its interactions with mycorrhizal
associations!®?* as main processes. A priority would be to consider
species-specific aggregation-abundance relationships and to study
how the exponent bydepends on the traits and the dispersal syndrome
of the species. More detailed versions of our spatial theory may also
consider variationintreesize, asincludedin classical neighbourhood
crowding indices**”, to describe asymmetric competition. Preliminary
analyses suggest that our key results hold when including the size of
trees and their growth.

Overcoming limitations of non-spatial models, as often used in
contemporary coexistence theory*1>1¢4’# requires approaches that
explicitly consider the lower-level processes that generate the phe-
nomenon of interest™. Our results demonstrated the utility of func-
tionsthat describe the parameters of the population models, here the
population-level competition coefficients a; (between species i and

f; equation 11d), as a function of neighbourhood-scale competition
coefficients f;and measures of spatial patterns (that is, kg, kp and By
equations (11c) and (11d))3. Our scaling approach had the advantage
that the parameters of these functions can be determined from field
measurements, such as the ForestGEO plots® in our case. Taking this
approach, we demonstrated that spatial patterns that emerge from
neighbourhood-scale processes have akey rolein species coexistence,



whichunderscores the need to understand the mechanisms that under-
pinthe spatial heterogeneity of forests in greater detail.
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Methods

Study areas
Twenty-one large forest dynamic plots of areas between 20 and 50 ha
with similar numbers of tropical, subtropical and temperate forests
were used in the current study (Extended Data Table 1and Supplemen-
tary Table 1). The forest plots are part of the ForestGEO network® and
arelocatedin Asiaand the Americas ranginginlatitudes from 6° 40’ N
to48° 08’ N. Tree species richness among these plots ranges from 36
to 468. All free-standing individuals with diameter at breast height
(d.b.h.) =1 cm were mapped, their size measured and identified. We
focused our analysis here onindividuals withd.b.h. >10 cm (resulting
in 313,434 individuals) and tree species with more than 50 individuals
(resulting in initially 737 species). The 10-cm size threshold excluded
most of the saplings and enabled comparisons with previous spatial
analyses. Shrub species were excluded. We also excluded 15 species with
low aggregation (that s, k< kz; Box 1), which would lead to negative
growthrates at small abundance values: ten of them from BCI, two from
MST, two from NBH and one from FS (for definitions of plot acronyms,
see Extended Data Table 1). These (generally less abundant) species
areprobablerelicts of an earlier successional episode when they were
more abundant®, We also excluded the two species Picea mariana and
Thuja occidentalis of the Wabikon forest that are restricted to a patch
of successional forest that was logged approximately 40 years ago®.
Most forest plots (18 out of our 21 plots, those with more than1cen-
sus) enabled the estimation of the average mortality risk of individuals
with d.b.h. 210 cm within one census period. We estimated mortality
acrossall species and obtained for each forest plot one average mortal-
ity rate for trees with d.b.h. =10 cm (Extended Data Table 1). We also
determined for all species used in our analyses the mycorrhizal associa-
tion types based on available global datasets*>~>* and website sources
(https://www.mycorrhizas.info/). To determine whether a species is
mainly dispersed by animals (zoochory), we used the Seed Information
Database (https://ser-sid.org/) of the Society for Ecological Restoration
and the Royal Botanic Gardens Kew and available literature®. Species
without descriptions of mycorrhizal associations and dispersal modes
were assigned according to their congeneric species. The proportion
of focal species with zoochory, with AM association and withboth are
shownin Extended Data Table 1.

Proxy for pairwise competition strength between species
Some of our analyses required the ratio B;/B;(Box1) that describes the
relative competitive effect of individuals of speciesion anindividual of
the focal species fat the neighbourhood scale**¥. In general, itis chal-
lenging to derive estimates for the pairwise competition coefficients®
because this would require unfeasibly large datasets to obtain a suf-
ficient number of neighboured f-j species pairs for less abundant spe-
cies. We therefore compared two scenarios. Inscenario 1, we assumed
that conspecificand heterospecificindividuals compete equally, thus
Byi/By=1.Inscenario 2, we assumed that individuals that are closerela-
tives compete more strongly or share more natural competitors or
pathogens than distant relatives® (that is, 8;/8;<1). As proxy for this
effect, we used phylogenetic distances®, given in millions of years (Myr),
as a surrogate for the relative competition strength because they are
available for the species in our plots based on molecular data or the
Phylomaticinformatics tool®. To obtain consistent measurements for
theratio 5/Bramong forest plots, phylogenetic similarities B;/Bywere
scaled between 0 and 1, with conspecifics set to 1and a similarity of O
assumed for a phylogenetic distance of 1,200 Myr, which was larger
than the maximal observed distance (1,059 Myr). This was necessary
toavoid discounting crowding effects from the most distantly related
neighbours®,

For plots without molecular data, we used the V.PhyloMaker2 package
(v.0.1.0)*' to generate a phylogenetic tree for each plot using GBOTB.
extented WP.tre updated from the dated megaphylogeny GBOTB® as

abackbone. For the other eight plots with molecular data, we followed
a previously reported method® to build the phylogenetic tree based
on DNA barcode data. We then used the cophenetic function in the
picante package (v.1.8.2)** to calculate phylogenetic distance for each
plot. For this, we assumed that functional traits are phylogenetically
conserved?***%, The analyses to generate phylogenetic trees and to
calculate phylogenetic distances were performed using R (v.4.3.2)%.

Crowdingindices describing competition of individual trees at
the neighbourhood scale

We assumed in our example model that survival of a focal tree k is
reduced in areas of high local density of conspecifics and heterospe-
cifics (that is, neighbourhood crowding), for example, through com-
petition for space, light or nutrients, or predators or pathogens783¢,
whereas reproduction is density-independent with per capitarate
rr. However, our approach was also able to deal with alternative
assumptions on the processes driven by neighbourhood crowding.
For example, analogous models were derived for crowding effects
on the reproductive rate and/or the establishment of offspring (Sup-
plementary Text).

We describe the neighbourhood crowding around a given tree o
of a focal species f by commonly used neighbourhood crowding
indices®*8870(Box 1), but used separate indices for conspecificand
heterospecifictrees. The conspecific crowding index C,;of agivenindi-
vidual o of a given focal species f counts the number n;of conspecific
neighbours; that have a distances d,; smaller than a given neighbour-
hoodradiusr, but weightseach nelghbouro byitsinversedistancel/d,;,
assuming that farther away neighbours compete less (equation (7a)).
The heterospecific crowding index H,,does the same with all hetero-
specifics (equation (7b)), and the heterospecific interaction crowding
index /,,weights heterospecifics additionally by their relative com-
petitive strength B,/B(equation (7c); see above ‘Proxy for pairwise
competition strength between species’). Thus, we estimated for each
individual o three crowding indices:

conspecific crowding:

nf 1
C0f= z d_ (73)
j=1 %0
heterospecific crowding:
n; 1
Hy=% Y i (7b)
izf j=1 "0/
with niche differences:
n; f 1
ZZ** (7¢)
izf j=1 ﬁ v d

where n;is the number of neighbours of species i within distance r of
the focal individual, d,; is the distance between the focal individual o
and its jth neighbour of species i, and B;/Bis the competitive effect
of one individual of species i relative to that of the focal species f
(refs.36,37,68-70).

Survival probability of individual trees

Tolink the survival ofanindividual otoits crowding indices C,;and/,,
we followed earlier work on individual neighbourhood models?¢738¢970
and assumed that the survival probability s,-of a tree o of species fis
given by

Sof:Sf exp(_ﬁﬁ(cgf-"lgf))r (8)
where s¢is adensity-independent background survival rate of species f

and fis the neighbourhood-scale conspecific competition coefficients
of speciesf(ref.36). Statistical analyses with neighbourhood crowding
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indices have shown that the growthand survival of trees depend on their
neighbours mostly within distances r of up to 10 or 15 m (ref. 70). We
therefore estimated all measures of spatial neighbourhood patterns
with aneighbourhood radius of r=15m.

Average survival rate of species

We used scale transition theory**and spatial point process theory® to
transfer the individual-based microscale information on the number
and distance of conspecific and heterospecific neighbours of focal
individuals, which are provided by the ForestGEO census maps, into
macroscale models of community dynamics®. To this end, we averaged
the survival probabilities s,,of all individuals o of the focal species f
(equation (8)), to obtain the average population-level survival rate s,
for whichwe derived a closed-form expression for gamma-distributed
crowding indices®:

Sy =7 exp(B (v, Cr+v,1p) 9

where Cyand I are the average crowdingindices, and yyc =In(1+ Dy Bp)/
(Dyc By) and y = In(1+ Dy B1)/(Dy Bp) arise through the averaging step
because of the nonlinearity in equation (8)%, and are driven by the dis-
persion (that s, the variance-to-meanratio) Dy-and D, of the distribu-
tion of the crowding indices?f and Tf respectively.Inour case of high
survival, where Dy Brand Dy, Brare both small, y-and y, are near one
and canbe neglected (thatis, y,=1and y,;=1).

Link between average crowding indices and spatial patterns

To incorporate the population-level survival rate (equation (9)) into
our populationmodel, we decomposed the average crowding indices
into species abundance and measures of spatial patterns (Box 1). In
brief, we did this by expressing the crowding indices in terms of the
pair correlation function, a basic summary function of spatial statis-
tics®, and the mean density A,= N/A of the species facross the whole
plotofareaA (see equations (S1)-(S8) in the Supplementary Text). The
resulting measures kyand kj, of spatial patterns quantify the increase
or decreasein average conspecific and heterospecific neighbourhood
crowding, respectively, relative to the reference case without spatial
patterns. For conspecifics, we expect under arandom distribution of
the focal species a mean crowding index of C = cN (where ¢ =21 r/A
isascaling factor, with A being the area of the plot and r the radius of
the neighbourhood; see equation (S7) in the Supplementary Text), and
for heterospecifics, we expect under independent placement (of the
focal species with respect to the heterospecifics) a mean crowding
indexof Hy=c 3. N; (ref. 25). We therefore obtained

t,r:kff(clvf) (IOa)
- kfh[c 5 N,-] (10b)
i#f
g
,f:ﬁfo:Bfw’ (10¢)
—— Hf
Br

where we define B;in equation (10c) as B, = Tf/ﬁf to be the average
competitive strength of one heterospecific neighbour relative to that
of one conspecific. Inasubsequent step, we assumed that Byisapprox-
imately constant in time (that is, our mean-field approximation).
The quantity k;in equation (10a) measures spatial patterns in con-
specific crowding of species f (kz>1indicates aggregation, and k;<1
regularity), and the quantity k in equation (10b) measures patterns of
heterospecific association around the focal species f (k, < 1indicates
segregation, and kj,, > 1 attraction). Note that our measure of conspe-
cific aggregation, which weights neighbours by distance, is highly

correlated to Condit’s omega measure of aggregation® that counts the
number of neighbours without weighting by distance (Extended Data
Fig.1). Wealso found that the strength of the latitudinal gradient in the
exponent of the aggregation-abundance relationship (expressed as
the R?) was for aradius of, for example, r>10 mbasically independent
of the neighbourhood area over which conspecific aggregation was
measured (Extended Data Fig. 2¢,f). This was expected because of the
distance-weighting (Box 1), whereby distant neighbours contribute
little to total neighbourhood crowding.

Mean-field assumption

Acrucial insight usedin our approach®is that crowding competition of
individualtrees, as described by equation (8), leads to diffuse competi-
tionat the populationlevelinspecies-richcommunities. Thatis, when
taking amean-field approximation**”,, the species-specific competition
strengths of heterospecifics canbereplaced in the macroscale model
by atemporally constant average heterospecific competition strength
By(ref. 8) (equation (10c)), which summarizes the emerging effects of
the pairwise neighbourhood-scale competition coefficients B,/Bat
the population level. For species-rich forests at or near a stationary
state, Byis agood approximation of a species-specific constant (see the
supplementary text in ref. 8). As we will see, a constant B;simplifies
the matrix of the community-level competition coefficients (equa-
tion (11d)) and enables analytical expressions of the invasion condi-
tion and the equilibria N of our multispecies model (equations (11a)
and (11b)) for the case that aggregationis independent of abundance.

Zero-sum assumption

Local density dependence onsurvival as assumed here (equation (8))
controls local tree densities and causes approximate zero-sum dyna-
mics?, inwhich the total number/of individuals remains approximately
a constant J*. For example, zero-sum dynamics emerged in our
individual-based simulations of the extended multispecies model (blue
linesin Extended DataFig. 5f-j). The number of heterospecificsis there-
fore given in good approximation by ¥,., N;=/* - N; .. Using the
zero-sum approximation together with the mean-field approximation
(equation (10c¢)) in equation (11f) decouples the multispecies dyna-
mics and enabled us to investigate the dynamics of individual species
in good approximation (equation (13)).

The corrected aggregation-abundance relationship

InFig.2and Extended DataFig. 3, we fitted aphenomenological power-
law for the species of a given forest plot, where the x value was the
logarithm of abundance N;and they value the corresponding logarithm
of kg (refs. 21,27,28). However, this led to values of kzclose to zero
for large abundance values, which would indicate strongly regular
patterns® not found in the data. Instead, in the extreme case without
an aggregation mechanism (thatis, random placement of offspring),
crowding competition will lead to the repulsion of conspecifics compa-
rable to heterospecific association k4, of heterospecifics. Thus, to avoid
abias, we used the quantity k- k; as the y value in our fit (Extended
Data Fig. 9). This required the assumption that k> kg, which was
satisfied for 98% of our species (722 out of a total of 737 species; see
the section ‘Study areas’). We leave investigation of the specific cases
where ki< kp, to future studies.

Basic multispecies model M1
Our basic multispecies model (M1) for the per capita growth rate of
species fis given by

Nepw1=Ner 1 ~
M—t =Ap(Ny, ) = (rp = 1) + spexp(=B W, (N;, ),

(11a)
At N

where N, is the abundance of species fat time step ¢, syis a density-
independent per capita background survival rate, r;is the per capita
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recruitment rate and fis the neighbourhood-scale conspecific com-
petition coefficients of species f. The biological information on neigh-
bourhood crowding competition was incorporated into the fitness
factor** W, which results from combining equations (9) and (10):

Wi(Ny) = c{kﬁNf +Bekgy ). N,}. (11b)
i#f

The community-level competition coefficients a, of this model
are therefore given by

o = ¢ By Ky (11c)

ap = c By (Brkp) forif. (11d)

Thus, even if the conspecific neighbourhood-scale competition
coefficients Bwere constant, the corresponding community-level
coefficients aywere not necessarily constant. Instead, they depended
onabundanceifaggregation kydepended on abundance®, as observed
inmany of our forest dynamics plots (Fig. 2). Not considering the effect
that crowding can have on the competition coefficients ayand aj is
a common (implicit) assumption of models used in coexistence
theory***#4 Note that equation (11a) together with the fitness factor
of equation (11b) enabled us to construct a reference model for the
constants kyand kg, for which the equilibria Nf and the conditions for
feasibility and invasiveness can be analytically derived®”?, and the cor-
responding non-spatial model (that s, kg = k,=1) without niche dif-
ferences (that s, B;=1) led to a per capita population growth rate of
zero for all abundances.

Extended multispecies model M2
However, we wanted to extend our model M1 (equations (11a) and (11b))
toinclude adependence of aggregation on abundance as new aspect.
Tointroduce thisnew model, we first defined kz-and k, as the observed
value of aggregation and heterospecific association, respectively, and
krasaggregation that depended onabundance. We then assumed that
heterospecific association k}h isindependent of abundance (as sug-
gested by Extended Data Fig. 4) and that the quantity (k; - kg) follows
apower law with respect to abundance (Extended Data Fig. 9 and the
section ‘The corrected aggregation-abundance relationship’). To for-
mulate our extended multispecies model (M2), we therefore rewrote
thefitnessfactor of equation (11b) by adding and subtracting the term
kN -

We(Ny () = c{(kf’} = KkpINs o+ KiNp + Bk Zf N, t}. (11e)

#

We obtained our extended fitness factor
N Y
WoN; ) =] (K=K ~Z5 | Ny +KiN; + Bk, Y. N; i
A is ff Kfn N]? Vf,e T KIVE e ffh‘f it
i+

by replacing the quantity (k}‘f - k}*h) inequation (11e) withanew function
L(Ny,) depending on abundance:

N\
L(N; ) = (K~ k) f;fj , (12)
'f .t fF fh(Nf

where Nfis the observed species abundance. Equation (12) simplifies
for the observed abundance (that is, N = Nf) to L(N}) = (kjr — k),
but otherwise represents the desired power-law with respect to
abundance.

Decoupled multispecies models M3

The overall objective of our extended model was to study the effect
that a possible dependence of aggregation on abundance (Fig. 2) has
on the ability of a newly invading (or an almost extinct) species to
increase its abundance. Therefore, we decoupled our extended mul-
tispecies model M2 into multiple single-species models (M3) by assum-
ing approximate zero-sum dynamics? (see the section ‘Zero-sum
assumption’ above), in which the number of heterospecifics is given
by .r N;=J* - N; .- We obtained from equation (11f) the fitness func-
tion

b
N, f
0.0l =k 7 | W Q=BG 28

that results together with equation (11a) in a closed-form expression
for the per capita population growth rate }Tf(Nf) of the focal species f
atlow abundance, which nevertheless includes the key information on
crowding competition with heterospecifics through the parameters
Brand kg, and total community size /*.

Model parameterization

Our extended multispecies model M2 (equations (11a) and (11f)) approx-
imated an underlyingindividual-based modelinthe tradition of earlier
spatially explicit work”*>**#¢7 (Extended Data Fig. 5), but used the
empirically observed spatial patterns instead of explicitly modelling
their dynamics®. In the most general case, the models M2 and M3 have
therefore seven parameters per species: three demographic parameters
(rs srand Bp); three parameters that quantify the spatial patterns (that
is, k}f, kf*h, By); and the exponent byof the aggregation-abundance rela-
tionship. The parameterization of the models depended on the objec-
tive of the model application and the available data. In the example
application of our theory, we wanted to feature the effects of spatial
patterns (Fig.2) on coexistence, and we derived a specific parameter-
ization adapted to our data and objective.

We estimated the species-specific measures k} and kf*,, of the
observed spatial patterns directly from the ForestGEO plot databased
onequations(7) and (10). The exponent b,of the corrected (power law)
aggregation-abundance relationship (equation (12)) was estimated
by linear regression, where the x value was In(N,) and the y value the
corresponding In(kz— kg) (Extended Data Fig. 9). The parameter b,
captured foragivenforest plot the average species response of aggre-
gation to abundance (Extended Data Fig. 9), and we used this value as
a parameter for all focal species. This approach is based on a
species-for-time substitution, which assumes that the power-law expo-
nent b.derived for multiple species of one census would be the same
as the b, derived for the same species but at multiple points in
time. The results of our individual-based simulations (Extended Data
Fig. 5a-f) supported this assumption. Note that effects of habitat asso-
ciation or details of dispersal willinfluence the values of k#(and k) and
contribute to the observed departures from the power law aggrega-
tion-abundance relationship, particularly for tropical forests (com-
pare Extended Data Figs. 3 and 5).

We assumed that all mortality was driven by neighbourhood crowd-
ingand therefore set the background survival rate tos,=1. For estima-
tion of the parameter By, we used the matrix of B,/ (see the section
‘Proxy for pairwise competition strength between species’ above) and
derived the crowding indices H,;and / .for each individual o (equa-
tions (7b) and (7¢)). The value of B,was then given by B, = Tf/ﬁf where
I_f and ﬁfare the population-level averages of the individual crowding
indices H,sand /.

To determine the unknown value of B, the neighbourhood-scale
conspecific competition coefficients of species fthat determines the
strength of crowding competition, we assumed that the focal species



is close to equilibrium (that is, /Tf(N}*) =0) and obtained by rewriting
equation (11a):
By ==In((1=rp)/sp/WHNp) (14)

At equilibrium, we found with equation (11b) that W (N7) =
ckgNs + constant , thus all else equal, Bis negatively related to the
observed abundance: species with lower observed abundance expe-
rienced stronger negative impacts on conspecifics than more common
species, a pattern frequently observed in plant communities?® 7>,
The effect of departures from the equilibrium assumptionontheinva-
sion criterion can be assessed by using equation (S17) in the Supple-
mentary Text.

Inserting equation (14) into equation (11a) led to our final equation
for the per capita population growth rate, for which the fitness func-
tionis given by equation (13):

Wr(Nf,¢)

1-r, \ W)
=Ny = (ry = 1)+sf( fj !
¢

Nepi=Nee 1
At Ny,

(15a)

For small per capita recruitment rates r-and large background sur-
vival (s;=1), we obtained

Neeri=Nee 1

Wr(N,0)
2 A
At N, ] (150)

=Af(Nf.t):rf[ W, (N*)
which suggests the use of the scaled per capita population growthrate
/Tf(Nf,t)/rf to remove the deterministic effects of the recruitment
rater,. Note that the effect of individual variation in model parameters
on the invasion criterion can be directly investigated by using equa-
tions (13) and (15).

Adding asmallimmigration rate

We reformulated our mathematical model (equation (15a)) in terms
of the change in the number of individuals during one time step and
added a small constant immigration rate r,v,(ref. 41) (r;is the repro-
ductionrate), thus:

Nf,t+1_Nf,t

At 16

=Ap(Np INp e+ Up I,

whichis equivalent to adding the term v;r,/N, to the per capita popu-
lation growth rate (equation (15a)). This approach differs from the
way immigration is usually modelled in neutral theory***’%, Note that
the term v;r/N;, decreases rapidly with increasing abundance N;,
and does therefore influence the dynamics only for small abundance
values, particularly if the values of v,is small as assumed here (Exten-
ded DataFig.7a-d).

Theinvasion criterion
Stable coexistence requires that the abundance of anewly invading
(oranalmost extinct) species increases™** (that s, arare species advan-
tage), and we wanted to investigate the effect of spatial patterns onthe
invasion criterion. On the basis of our closed-form expression for the
per capita population growth rate /Tf(Nf) (equations (13) and (15a)),
invasion analysis reduces to the task of identifying the conditions under
which /1 (N,) maintainsa sufﬁCIentIy highvalue for low abundance N,.
We therefore demanded that /1 (N,)should beslightly larger than zero
(/lmm) sothat species canescape the effects ofdemographlc stochastic-
ity; that is, our invasion criterion is given by 1, - (V) > /lmm
Fromequation (15a) we found that the invasion condition /Tf(NS) > )lmm
translated into the condition

WAN)/WAND) <1-6, (17a)

with §=1- In((/Tmln re+1)/sp)/In((1-r)/sy). For our case of small
reproduction rates ryand high background survival (thatis, s,=1), we
obtained 6= )lm,n/r We thereforeinvestigated the ratioW (N;)/W,(N})
in more detail, Wthh can be expressed as (equation (S14) in the Sup-
plementary Text):

bf+1
ORI
Wf(Ns) _ N; f N} f

(17b)
W(N}) 1+Kf+pf
with
k*
fh
K :(I_B) % * (17C)
f f kff_kfh
k5 *
mJ
Pr=Br 5T 17d)
I k= ki Ny

The condition in equation (17a) led together with equation (17b) to
the invasion criterion

N, b1 N,
1—(%] +Kp| -5
) Wf(Ns) ) N; f N;

WiNp) 1+p,+Kf

18)

> 4.

For the case without niche differences (that s, ;= 0), equation (18)
suggests that two main mechanisms allow species to increase their
rare species advantage: either asmaller negative value of the exponent
brof the aggregation—abundance relationship or a smaller value of p,
(Fig. 4c). We therefore name p, risk factor’, because larger values of
prlead to smaller values of the per capita growth rate. The maximal
value of the risk factor that satisfies the invasion criterion is given by

bg+1
1 N, N,
pf,max = 5 (1—6)— (N}] +Kf|:(1_6) - [N}j

Thus, for each combination of N;/N7, by, k,and 6, we obtained one
critical value of p;,.inwhich the species can invade if psis smaller than
this critical value (Fig. 4c).

Itisinstructive to investigate the biological mechanism that deter-
mines the values of the three factors pj, (IVS/N})”f+1 and k,that deter-
mine the invasion criterion (equations (18) and (19)). First, the risk
factor ps(equation (17d)) becomes smaller if the observed relative
speciesabundance N;//* of the focal species in the community becomes
larger (this favours forests at higher latitudes; Extended Data Fig. 8a),
if aggregation increases (that is, k}“,,/(k}f— kf*h) decreases; Extended
Data Fig. 8d), and if niche differences become larger (that is, B,
decreases). Because of the overwhelming effect of the relative abun-
dance, therisk factor p,decreases strongly with latitude for our dataset
(Extended Data Fig. 8c) and for species with lower abundance, aggre-
gation k;f would increase and reduce p.. Second, a smaller negative
value of the exponent b,of the aggregation-abundance relationship
leads to a smaller value of(l\/s/N}*)”f+1 (this favours forests at lower
latitudes; Extended Data Fig. 8b).

Finally, as expected, it is more likely that the invasion criterion is
fulfilledif niche differences become larger (thatis, B.becomes smaller).
Inthis case, psbecomes smaller (equation (17d)) and k,becomes larger
(equation (17¢)), and because N;/Nf << (1 - 6), the inequality of equa-
tion (19) is easier to satisfy. The invasion criterion (equation (19)) can
be satisfied for niche differences even if ;< -1.Indeed, some species
of the CBS plot, which showed an exponent of b;=-1.077, fulfil the

19)




Article

invasion criterion, mostly owing to weak aggregation thatled tolarge
values of k4/ (k- ky) and larger k;(Extended Data Fig. 7e,f). Thus, as
expected, the stabilizing mechanism of niche differences (B;<1) hasa
key role if spatial patterns alone provide only weak stabilization.

Scenarios investigated

We considered four scenarios to investigate the effects of the spatial
mechanism of neighbourhood crowding and immigration on the ability
ofthe 720 study species toincrease when having low abundance. Sce-
nario 1assumed that conspecifics and heterospecifics compete equally
(thatis, no niche differences; ;= B, B;=1), and scenario 2 considers
niche differences between species approximated by phylogenetic
dissimilarity (see the section ‘Proxy for pairwise competition strength
betweenspecies’above). Scenarios 3and 4 are the same as scenarios 1
and 2, but also assume a small constant immigration with parameter
vy=0.1. For the mean reproduction rate of r,= 0.1 per time step across
allplots, this resultsin animmigration rate of r,v;= 0.01, or Limmigrant
every 100 time steps.

Spatially explicit simulation model

Model description. This model description was adapted froma previ-
ous publication®. We used the individual-based simulations to verify
that the observed patterns (that is, the power law of the abundance-
aggregation relationship) can emerge in principle from the minimal
mechanismsincluded in the spatial multispecies model (equations (8)
and (11a)).

The individual-based model considered only reproductive (adult)
trees, but no size differences. During agiven 5-year time step, the model
simulated first stochastic recruitment of reproductive trees and place-
ment of recruits, and second, stochastic survival of adults as given by
equation (8), depending on their neighbourhood crowding indices
(equations (7a)—-(7c)) estimated from the community of adult trees.
Inthe next time step, the recruits counted as reproductive adults and
were subject to mortality. Noimmigration from ametacommunity was
considered (thatis, v;= 0; equations (1a)). To avoid edge effects, torus
geometry was assumed.

Eachindividual produced ryrecruits onaverage, and their locations
were determined by a type of Thomas process® to obtain a clustered
distribution of recruits. Inour model, the spatial position of the recruits
was determined using two independent mechanisms. First, a propor-
tion 1- p, of recruits was placed stochastically around randomly
selected conspecific adults (parents) by using atwo-dimensional kernel
function (here a Gaussian with variance ¢®). This is the most common
way in most spatially explicit models to generate species clustering.
Technically, we first selected for each of these recruits randomly one
parent among the conspecific adults and then determined the posi-
tionoftherecruit by sampling fromthe kernel. Second, the remaining
proportion p,of recruits was distributed in the same way, but around
randomly placed cluster centres that are located independently of
conspecific adults.

Parameterization of the simulation model. The simulation model
used hereis described in detail ina previous study®. However, we used
here distance-weighting for the estimation of the crowding indices.
Thus, inthe source code (the supplementary informationin ref. 8) we
used DistanceWeighting = 1instead of DistanceWeighting = 0.
Thesimulations of theindividual-based forest model were conducted
in 5-year time steps over 25,000 years (equivalent to 5,000 census
periods)inanareaofA =200 ha,and comprised approximately 86,000
trees with initially 80 species. The model parameters were the same
for all species, and all species followed exactly the same model rules.
We selected ;= Bto obtain no differences in conspecific and het-
erospecificinteractions and s;=1(no background mortality), astand-
ard deviation of =10 m of the kernel function, and we adjusted the
parameters ;= 0.02andr;= 0.1to produce tree densities (430 per ha)

and an overall 5-year mortality rate (10%) similar to that of trees with
d.b.h. >10 cm of the BCI plot. The radius of the neighbourhood used
to estimate the crowding indices was r =20 m, and the number of ran-
domly assigned cluster centres was 16.

Reporting summary
Furtherinformation onresearch designisavailable in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The minimum datasets that enable the repetition, interpretation, veri-
fication and extension of the research is provided in Supplementary
Tablel. This table provides for all species the indices of spatial patterns
and all other quantities used in the model analysis and to generate
Tablel, Figs.2-4 and Extended Data Figs. 2-4 and 6-9. Additional raw
datafor Fig.3areshownin Extended Data Table1. The output dataofthe
individual-based forest simulation model used to generate Extended
DataFig. 5is provided in Supplementary Table 2. To estimate the spa-
tial pattern indices, we used the raw census data of the ForestGEO
network. The raw census data of several sites are publicly available
(https://forestgeo.si.edu/explore-data). For the other sites, they are
available uponreasonable request and with permission of the principal
investigators of the corresponding ForestGEO sites (https://forestgeo.
si.edu/sites-all). Mycorrhizal association types were based on available
global datasets®*° and website sources (https://www.mycorrhizas.
info). To determine whether a species is mainly dispersed by animals
(zoochory), we used the Seed Information Database (https://ser-sid.
org) of the Society for Ecological Restoration and the Royal Botanic
Gardens Kew. Source data are provided with this paper.

Code availability

Source code for the simulation model written in Delphi (Pascal), which
contains the procedures to repeat the results shown in Extended Data
Fig.5andto estimate the spatial patternindices, canbe found in the sup-
plementary information of a previous study?.
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Extended DataFig.1|Sensitivity of the aggregation-abundance
relationships to the measure of aggregation. a, Condits’s Q,,,aggregation
measure for the species analysed in Wiegand et al. (ref. 8) plotted over the
corresponding values of the distance-weighted aggregation measure k;(r=15m)
usedinthe presentstudy. b, exponents of the aggregation-abundance power-
law derived with Condits’s Q,,, plotted over the corresponding values of the

Aggregation K (r =10 m)

Aggregation K(r = 10 m)

distance-weighted aggregation measure ki(r=15m). ¢, comparison of the
distance-weighted aggregation measure k(r) for the neighborhood radiil0O m
vs.15m.d, sameas c), but for the neighborhood radii 10 mvs.20 m. e, sameas c),
butfor the neighborhood radii10 mvs.25m. To outlinethe overalltendencyin
the datawefitted linear regressions to the data. Note the double-logarithmic
scale of panelsa), c),d),and e).
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of thelinearregressionbetweenIn(kg) and In(N) for each speciesf. ¢, the
Pearson correlation coefficient between the power law exponent eand the plot
properties speciesrichness, latitude and mean annual temperature for the
scaling of kywith N.. d, same as a) but for the exponent of the abundance scaling
of the difference between aggregation k;-and heterospecific association kg,
e,sameasb) butfor thelinear regression between In(k;— k) and In(N). f, same
as ¢, butfor the scaling of kg— kg, with N Our measures of aggregation k-and
heterospecificassociation k;, are based on neighbourhood crowding indices
that count the number of neighbours within distance rof the focal individual,
buteachneighbouris weighted by the inverse of its distance to the focal
individual (Box1). The neighbourhood distance wasinall panelsr=15m.

Radius r of neighborhood (m)

For details onthe forest plots see Extended Data Table 1and for data
Supplementary Data Table 1. To show the overall tendency in the data we fitted
ina),b),d) ande) linear regressions. The plot acronyms: BCI: Barro Colorado
Island (tropical forest); BDGS: Badagongshan (subtropical forest); BHI: Baihua
(temperate forest); CBL: Chebaling (subtropical forest); CBS: Changbaishan
(temperate forest); DHS: Dinghushan (subtropical forest); DLS: Donglingshan
(temperate forest); FL: Fenglin (temperate forest); FS: Fushan (subtropical
forest); GTS: Gutianshan (subtropical forest); HF: Harvard Forest (temperate
forest); HSD: Heishiding (tropical-subtropical forest); MST: Mo Singto (tropical
forest); NBH: Nabanhe (tropical forest); QL: Qinling (subtropical-temperate
forest); SCBI: Smithsonian Conservation Biology Institute (temperate forest);
SHJ or SIN: Sinharaja (tropical forest); TRC: Tyson Research Center (temperate
forest); TTS: Tiantong (subtropical forest); WAB: Wabikon (temperate forest);
XSBN: Xishuangbanna (tropical forest).
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Extended DataFig.5| Theaggregation-abundancerelationship and the
rare species advantageinindividual-based simulations. We used an
individual-based implementation of the community model of eqs.1and 4 with
initially 80 speciesonanareaof 200 hawithoutimmigration, simulated for
5000 timesteps (25,000 years, At=5years). Aproportion p,of recruits was
placed with a Gaussian kernel around randomly distributed cluster centres,
and therestwith the same kernel around their parents (see methods). The
different simulations differ only in the parameter p,=0.1,0.2,0.35,0.6,0.8
(fromtop tobottom). a-e: temporal aggregation-abundance relationship for
2or3selected species, taken every 50 years (black disks), and for all 80 species
atyear 25,000 (red discs). Fit of the temporal relationship with a power law with
exponente (blueline), f-j: time series showing the abundances of the first 25
(outof 80) species, where onespecies (red) invades at year 1000 (and 2 timesteps

after extinction) starting with 50 individuals. The average abundanceis shown
asblueline. k-o: Total crowdingindex C; + H; (i.e., distance-weighted number
of neighbours) of the invading species in dependence on abundance [in k)

we used aspeciesthat wentextinct]. Theredline shows the fit with alinear
regression. p—t:sameask)-o), but only for conspecific crowding C;. The model
parameters were the same for all species: r;=0.1/At, s,= 0, B,=1,c=0.000063,
r=20m, B;=0.02,0=10 m(see methods), and Ny=1070 and J*=86,000
emerged. For comparison with Table 1, the normalized per capita population
growthrates /Tf(M =10)/rsat thelast timestep were 0.019,0.012,0.022,0.031,
and 0.038 for parameter values of p,=0.1,0.2,0.35,0.6, and 0.8, respectively.
Theraw datawith the output ofthe individual-based model canbe foundin the
Supplementary Information as Supplementary Data Table 2.
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Extended DataFig. 6 | The scaled per-capita population growthrate
}Tf(Ns)/rf, asinfluenced by spatial structure, niche differences and
immigration for 21 ForestGEO plots. a, the scaled per capita population
growthrate Tf(Ns)/rf forasmallabundance of Ny=10 individuals, per forest
plot for scenariol(noimmigration: v,=0, no niche differences: ;= ;) that
representsthe “pure” effect of spatial structure. b, same as a), but for scenario 2
thataddsniche differences (v=0, B < B). ¢, same as a), but for scenario 3 adds
immigrationtoscenariol(v;=0.1, B;=B).d, scenario 4 adds niche differences
andimmigration (v;=0.1, B;<By).e: /Tf(NS)/rf forscenariolindependenceon

60 1 10 100

Abundance N;

1000

abundance N, averaged separately over all species of tropical, subtropical and
temperate forests. The dashed verticalline indicates the smallabundance

of N;=10.f,samease), but for scenario 2. g, same as e), but for scenario 3,and
h,samease), butfor scenario4.Inscenarios 2and 4 we assumed that more
closelyrelated species compete more strongly. The models were parameterized
for 720 species of the 21 ForestGEO plots. We excluded the temperate forest at
CBSwithexponentb;<-1.Tooutline the overall tendency in the datawe fitted in
panelsa)tod)alinearregressiontothe data.
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growthrate onthe exponent of the aggregation-abundance relationship.
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Mo Singto (MST) plotin Thailand with parameters b,=-0.3, N;*=291,/=15,665,
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e, andf, examples for the scaled per capita population growth rate of species at
the CBS plot, whichshowed a power law exponent of b;=-1.077, for scenario 2
withniche differences (i.e., B,<1). We assumed that individuals compete at the
individual scale more strongly if they are phylogenetically more similarity.
Thespeciesacronyms: ACEMON (Acer mono), ACEPSE (A. pseudosieboldianum),
ACETEG (A. tegmentosum), FRAMAN (Fraxinus mandshurica), PINKOR (Pinus
koraiensis), QUEMON (Quercus mongolica), TILAMU (Tiliaamurensis), ULMJAP
(Ulmusjaponica).
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Extended Data Table 1| Characteristics of the selected forest plots

Plot Acronym Latitude Elevation sp,:(?i-es %(EE; spFe(():?:sl + ?r:(:; M:;T:é"y EX%‘:IT Nt 5;2‘1)]- er\:z /Z\ZI:/E’O;%:
a Tropical
Sinharaja SHJ 6.40 500 239 17070 59 25 0.087 -0.38 0.75 0.79 0.71
Parro Colorado BCI 9.15 140 304 20647  63(-10) 50 0.113 032 089 100 091
Mo Singto MST 14.26 770 262 15665 52 (-2) 30 0.136 -0.30 0.88 0.91 0.80
Xishuangbanna* XSBN 21.61 789 468 12263 52 20 0.14 -0.52 0.81 0.85 0.67
Nabanhe NBH 22.23 932 290 8512 40 (-2) 20 - -0.32 0.78 0.86 0.67
Heishiding T HSD 23.45 567 245 30992 82 50 0.1 -0.33 0.84 0.81 0.68
b Subtropical
Dinghushan* DHS 23.16 350 210 11906 30 20 0.18 -0.59 0.87 0.80 0.77
Chebaling CBL 24.72 495 228 10159 32 20 - -0.42 0.78 0.84 0.65
Fushan* FS 2476 667 110 19261 33 (-1) 25 0.071 -0.44 0.85 0.81 0.68
Gutianshan* GTS 29.25 581 159 18215 33 24 0.09 -0.33 0.73 0.68 0.48
Badagongshan BDGS 29.77 1406 232 25121 57 25 0.06 -0.39 0.67 0.77 0.54
Tiantong TTS 29.81 454 154 14967 34 20 0.08 -0.65 0.68 0.79 0.55
Qinling*t QL 33.54 1431 121 11698 29 25 - -0.51 0.45 0.61 0.29
C Temperate
Lyson Researeh  1Re 38.52 203 46 6520 17 20 0085 075 082 047 029
Smithsonian
Conservation SCBI 38.89 330 65 8165 19 25 0.08 -0.77 0.68 0.42 0.17
Biology Institute
Donglingshan DLS 39.96 1400 51 9558 15 20 0.04 -0.89 0.20 0.60 0.13
Baihua*® BHI 4222 793 63 17197 17 24 0.07 -0.72 0.24 0.53 0.12
Changbaishan* CBS 42.38 801 52 9995 16 25 0.05 -1.08 0.25 0.69 0.13
Harvard Forest HF 42.54 354 55 23901 16 35 0.14 -0.76 0.50 0.25 0.13
Wabikon™ WAB 45.55 501 36 14021 12 (-2) 25.2 0.04 -0.93 0.00 0.42 0.00
Fenglin FL 48.08 447 46 8601 12 30 0.11 -0.90 0.08 0.50 0.00

* plots with bar code phylogeny, genus level phylogenies were used for all other plots; t Heishiding is classified as tropical-subtropical forest, Qinling is classified as subtropical-temperate forest;
#The numbers give the number of focal species with at least 50 individuals with dbh > 10 cm, we excluded species with k< kg, (the numbers in parenthesis) and two species at the Wabikon
forest located in a patch of successional forest that was logged approximately 40 yr ago; § The average mortality rate for trees with dbh >10 cm in the plot for a At =5 year period. Assuming
approximate equilibrium, we used the values of the mortality rate to parameterize the unknown per capita recruitment rates r. We used a recruitment rate of 0.1/At for the 3 plots without mortality
data. The mortality rate of the TRC plot was estimated from a 13.4 ha section of the 20 ha plot; || The exponent b; of the aggregation-abundance relationship based on corrected aggregation

k¢ — kq; 9 Proportion of species showing mostly animal seed dispersal; # Proportion of species with arbuscular mycorrhizal association.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description This study conducts a systematic latitudinal analysis of conspecific aggregation and heterospecific association among neighboured
trees across 21 large 20-50 ha inventory plots of temperate to tropical forest. To derive theoretical expectations for how the
observed spatial patterns may impact species coexistence, we incorporate them into a mathematical model featuring neighbourhood
crowding competition and estimated the per capita population growth rate of each species for low abundances. The approach
includes analysis of fully-mapped forest plots of the Forest Global Earth Observatory (ForestGEO) to derive indices of conspecific
aggregation and heterospecific segregation of 720 species and analysis of mathematical and simulation models driven by these data.

Research sample We used ForestGeo ( https://forestgeo.si.edu/explore-data ) data sets of 21 large forest dynamics plots of areas between 20 and 50
ha.
Sampling strategy The 21 forest plots included in the study have been completely censused for trees at least 1 cm in diameter, so there is no sampling

within each forest.
Data collection The study did not involve data collection. The data from model simulations was collected as described in the methods.

Timing and spatial scale  The study did not involve data collection. We used for each forest dynamics plot (size ranging between 20 and 50ha) data of one
census.

Data exclusions We used only trees with sizes >= 10cm dbh (diameter at breast height), with shrub species being excluded, which is an established
approach in the field. This size threshold excludes most of the saplings and enables comparisons with previous spatial analyses. Tree
species with a minimum of 50 individuals (dbh >= 10 cm) were used in the study as focal species to ensure that estimates of spatial
patterns were reliable. We also excluded 15 of 737 species because they showed lower levels of aggregation than heterospecific
association (a special case not covered by our model), and we excluded the two species Picea mariana and Thuja occidentalis of the
Wabikin forest that are located in a patch of successional forest that was logged approximately 40 years ago.

Reproducibility The estimation of the measures of spatial patterns is specified exactly in the publication such that it could be reproduced (Box 1). The
code of the simulation model was published as supplementary information in a previous publication (Wiegand et al, 2021, ref. 8).

Randomization Not applicable to this study.
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Blinding Blinding was not applicable to this study.

Did the study involve field work? []ves X No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies IXI |:| ChlIP-seq
Eukaryotic cell lines IXI |:| Flow cytometry
Palaeontology and archaeology g |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
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Plants

Plants

Seed stocks N/A

Novel plant genotypes ~ N/A

Authentication N/A
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