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Populations of forest trees exhibit large temporal fluctuations, but little is known about the synchrony of these fluctuations
across space, including their sign, magnitude, causes and characteristic scales. These have important implications for
metapopulation persistence and theoretical community ecology. Using data from permanent forest plots spanning local,
regional and global spatial scales, we measured spatial synchrony in tree population growth rates over sub-decadal and
decadal timescales and explored the relationship of synchrony to geographical distance. Synchrony was high at local scales of
less than 1 km, with estimated Pearson correlations of approximately 0.6–0.8 between species’ population growth rates across
pairs of quadrats. Synchrony decayed by approximately 17–44% with each order of magnitude increase in distance but was
still detectably positive at distances of 100 km and beyond. Dispersal cannot explain observed large-scale synchrony because
typical seed dispersal distances (<100 m) are far too short to couple the dynamics of distant forests on decadal timescales. We
attribute the observed synchrony in forest dynamics primarily to the effect of spatially synchronous environmental drivers
(the Moran effect), in particular climate, although pests, pathogens and anthropogenic drivers may play a role for some
species.

1. Introduction
Spatial synchrony in species’ population dynamics has broad consequences for basic ecology and applied conservation [1].
Firstly, high spatial synchrony entails greater metapopulation extinction risk [2,3]. Secondly, high synchrony can lead to low
stability of ecosystem function [4]. Thirdly, spatial synchrony poses challenges to theoretical community ecology. If synchrony
were very high, this would validate the approach of many community models, which ignore spatial variation in population
fluctuations (e.g. [5,6]). On the other hand, if synchrony were very low, this would motivate the application of mean-field
approaches [7] to average independent fluctuations across space. But if synchrony is intermediate between these two extremes,
more complex modelling approaches will be needed.

Spatial synchrony in population dynamics has been examined for insects [8–10], fish [11], crabs [12], birds [13,14], mammals
[15,16] and viruses [17], and in many cases has been found to extend for hundreds or thousands of kilometres. There are
two broad explanations for spatial synchrony [1,18]. The first is dispersal, which in theory can synchronize density-dependent
population dynamics across space [1,18], even at scales substantially larger than the mean dispersal distance [19]. The second,
referred to as the ‘Moran effect’ [15], is the dependence of population dynamics on spatially synchronous environmental
variables, such as rainfall [1,16,18]. Synchrony of one species’ population (via either dispersal or the Moran effect) can also drive
synchrony in other species’ populations via predator–prey or host–pathogen interactions [20]. Current empirical evidence for
a range of species, from insects [21] to birds [22] to mammals [16,23], points to a dominant role of the Moran effect in driving
spatial synchrony.

Comparatively little is known about the spatial synchrony in tree population dynamics. For mast-seeding species, synchrony
of seed production occurs over large distances and has been attributed mainly to the Moran effect [24–26], but how this
translates to synchrony of overall population dynamics, or to the majority of tree species that are not mast-seeders, is unknown.
In the temperate zone, synchrony in the fossil pollen record has been observed at scales of ca 100 km, indicating the presence
of some synchronizing mechanism—either dispersal or the Moran effect—over geological timescales [27]. But such fossil data
are of limited use for quantifying the magnitude of synchrony over ecological timescales. Although there is clear evidence of
synchrony in individual tree diameter growth rates (based on tree rings) on annual timescales across distances of up to 1000 km
[28], it is unknown whether synchrony in diameter growth translates to synchrony in population growth (our focus here). The
only study we are aware of that specifically measured synchrony in tree population growth rates used data from three large
forest plots in central Panama over 3−5 years and found Pearson correlations in population growth rates of r = 0.45−0.58 over
distances of 18−33 km [29].

Because of the tendency for tree species’ populations to fluctuate strongly [30,31] and because trees are foundational species
in ecosystems across the planet, it is essential to fill the knowledge gap about their spatial synchrony. On local scales, the
statistical signature of tree population fluctuations is consistent with temporal variation in environmental conditions being
their main driver [30,31]. In the permanent 50 ha ForestGEO plot on Barro Colorado Island (BCI) in Panama, the magnitude
of the change in abundance of common tree species (species with more than 1000 individuals) was on average 28% over the
period 1982−2010, which is more than ten times greater than one would expect under pure demographic stochasticity [30]. One
particularly large abundance change (a 50% decline in the former canopy dominant Poulsenia armata over a decade) at BCI
has been attributed to drought [30], and others have been attributed to insect outbreaks [32]. Similarly large fluctuations in
tree abundance have been observed at other ForestGEO plots around the world, and have been attributed to hurricanes and
typhoons, fires, elephants, and other environmental perturbations [6,30].

2

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240486

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 N

ov
em

be
r 

20
24

 

http://orcid.org/
http://orcid.org/0000-0002-9847-1710
http://orcid.org/0000-0003-1039-4157
http://orcid.org/0000-0003-4191-1495
http://orcid.org/0000-0002-8596-7522
http://orcid.org/0000-0001-8302-6908
http://orcid.org/0000-0002-2971-5881
http://orcid.org/0000-0001-9749-8324


Our lack of knowledge about spatial synchrony of tree populations can be attributed to methodological challenges. Spatial
synchrony for a single species can be assessed using standard statistical methods if sufficiently long time series are available
[33], but most available time series of tree population dynamics are short relative to their estimated temporal autocorrelation
period, which is roughly a decade [6,31]. A further difficulty in tropical forests is that most tree species are rare and popula-
tion dynamics of rare species at scales of even several hectares are driven largely by demographic stochasticity, i.e. random
fluctuations in population size arising from the discreteness of individuals [30]. Here, we apply novel statistical approaches
to overcome these inherent methodological difficulties and estimate synchrony in tree population dynamics over five orders
of magnitude of geographical distance. Our approach circumvents methodological difficulties by eschewing a per-species
synchrony estimate and instead calculating an average synchrony estimate for each pair of observation units with at least one
shared species. We leverage data from permanent forest plots on three spatial scales: the local scale, focusing on within-plot
dynamics for two plots in the ForestGEO network; the regional scale, focusing on synchrony between 47 plots in the Marena
network in central Panama; and the global scale, focusing on synchrony among 22 plots in the ForestGEO network.

2. Methods
(a) Data sources
We used data from permanent forest plots on three different spatial scales: local, regional and global. For the local scale,
we used the two longest-established 50 ha plots in the ForestGEO network: the BCI plot in Panama, and the Pasoh plot in
Malaysia. We used seven censuses of the BCI plot (from 1982 to 2010) and five censuses of the Pasoh plot (from 1987 to 2006).
Each ForestGEO plot is censused at intervals of ca 5 years following a standard protocol, according to which all individual
freestanding woody plants with diameter-at-breast-height (DBH; measured 1.3 m from the ground) ≥1 cm are identified and
measured [34]. Individuals are tagged, which allows survival to be assessed across censuses. In our analyses, we used only main
stems for trees with multiple stems.

For the regional scale, we used plots from the Marena network in central Panama [35]. We used only the 47 plots (out of a
total of 65) that had been censused at least twice, to allow calculations of abundance fluctuations over time. All but two of these
plots are 1 ha in size; one plot is 4 ha (Cocoli) and one is 5.96 ha (Sherman). The distances between pairs of the Marena plots
used range from 0.3 km to over 200 km (electronic supplementary material, figure S1). These plots are censused using a similar
protocol to the ForestGEO plots, except that in most of the 1 ha plots, a DBH threshold of 1 cm is used only in a 0.16 ha (40 m×
40 m) subplot, with a larger 10 cm threshold being used outside this.

For the global scale, we used 22 plots from the ForestGEO network (figure 1a; electronic supplementary material, appendix
S1) that follow the standard ForestGEO measurement protocol described above for BCI and Pasoh. The selected plots had at
least two censuses and areas of at least 12 ha. Inter-plot distances ranged from 138 km to nearly 20 000 km.

When describing methods that apply at all three scales we use the general term ‘observation units’ to refer to quadrats within
plots in the local-scale analyses (BCI and Pasoh) and to entire plots in the regional analyses (Marena plots) and global-scale
analyses (22 ForestGEO plots). Prior to assessing synchrony, we established which species were shared across observation units
at each spatial scale (electronic supplementary material, appendix S2).

We estimated synchrony separately for each pair of observation units at each of the three focal scales. We ran one analysis for
trees with ≥10 cm DBH and another for trees with ≥1 cm DBH. Repeating all of our analyses at two different DBH thresholds
brought two advantages. Firstly, it allowed us to use more of the data: for the 1 cm threshold, we were able to include more
trees overall, whereas for the 10 cm threshold, we were able to use the full spatial extent of the regional-scale plots (see
methodological details below). Secondly, the analysis at each threshold reveals potentially distinct information about factors
driving synchrony in population dynamics, in particular recruitment: synchrony of population dynamics for trees above 1 cm
DBH will be strongly influenced by recent recruitment events, whereas that of trees above 10 cm DBH will be more reflective of
recruitment events over several decades.

We use the term ‘spatial grain’ to refer to the size of the observation units (e.g. 1 ha plots) and ‘spatial scale’ to refer to the
scale over which the observation units are spread (e.g. the regional scale). Ideally, analyses would be conducted at the largest
spatial grains possible, to minimize the influences of demographic stochasticity and immigration (see §2c ). But in practice, our
choices of spatial grain were constrained by the data.

For the local-scale analyses, we subdivided the plot (i.e. BCI or Pasoh) in each analysis to create quadrats, which were the
observation units. At the 10 cm DBH threshold, we ran the main analyses at a large spatial grain of 6.25 ha, to minimize the
effects of immigration. We then repeated the analyses at a small spatial grain of 1 ha to facilitate comparison with the regional
analysis for the same DBH threshold. At the 1 cm DBH threshold, we used three spatial grains: 6.25, 1 and 0.16 ha. The 0.16
ha grain here again facilitates comparison with the regional analysis at the same DBH threshold. Because the two plots in the
local-scale analyses had dimensions 1000 × 500 m, when using the 0.16 ha grain we took the 0.16 ha quadrats from only a 1000 ×
480 m sub-area of the plot in order to ensure that all quadrats were square.

For the regional-scale analyses we treated each plot as a separate observation unit and so the grain was 1 ha at the 10 cm
DBH threshold and 0.16 ha at the 1 cm DBH threshold. For the two regional plots larger than 1 ha, we used data from a subplot
of 1 ha (for the 10 cm DBH threshold) or 0.16 ha (for the 1 cm DBH threshold), which standardizes the grain across observation
units at the expense of discarding some information. Only 34 regional plots could be used in the 1 cm DBH threshold analysis
(0.16 ha grain), because in several Marena plots, the smaller stems were not censused or had been censused only once.

For the global-scale analyses, we treated each entire ForestGEO plot as a separate observation unit. A limitation of this is
that the resulting observation units have different spatial grains, i.e. the ForestGEO plots have different areas. But the effects
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of this on the results should be minimal, because the minimum plot area was large (12 ha) and so the effects of demographic
stochasticity and immigration should be small. Detailed acknowledgements for each plot are provided in electronic supplemen-
tary material, appendix S1.

(b) Synchrony metric
In this subsection, we define a general synchrony metric, which is independent of the details of the model we use in the next
subsection to estimate it. Let synchrony ςi be the Pearson correlation between the population growth rates of species i at two
observation units, A and B, over time. A positive population growth rate means a species is increasing in abundance; a negative
population growth rate means a species is decreasing in abundance. A synchrony value of ςi = 1 would imply that the species’
population growth rate at observation unit A is exactly proportional to and of the same sign as the rate at observation unit B; a
synchrony value of ςi = − 1 would imply that the species’ population growth rate at observation unit A is exactly proportional
but of opposite sign to that at observation unit B; and a synchrony value of ςi = 0 would imply that the species’ population
growth rate at observation unit A is uncorrelated with that at observation unit B.

Although ideally one would estimate a separate value of ςi for each of the species shared between two observation units, in
our application to forest trees this is infeasible because of data limitations, mainly associated with the shortness of the census
time series relative to the temporal autocorrelation period of forest tree population dynamics [31]. For this reason, for each pair
of observation units, we estimate the average synchrony ς for all shared species, which is an average of the species-specific
synchrony values ςi. We emphasize that we are still conceptualizing each species as having its own distinct synchrony value ςi,
but we are unable to estimate these species-specific values, which we acknowledge as an inevitable methodological limitation
given the data. The conceptual relationship between species-specific synchrony and the average synchrony metric is explained
further in electronic supplementary material, appendix S2 (see in particular electronic supplementary material, figures S2 and
S3).

(c) Estimating synchrony
In this subsection, we describe the model we used to estimate the average synchrony ς for each pair of observation units. In
our datasets, the main source of uncertainty when estimating synchrony is demographic stochasticity, which can cause realized
population growth rates at an observation unit to vary substantially from the expected rates, eroding the signal of synchrony.
Demographic stochasticity has stronger effects in smaller populations. This is important in our analyses because many forest
tree species are rare. Henceforth, when we use the term ‘population growth rate’ without qualification, we are referring to
expected population growth rates uncontaminated by demographic stochasticity, i.e. the rates that we would measure in the
limit of very large sample sizes (large numbers of trees).
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Figure 1. (a) Map of ForestGEO plots used in our global-scale analyses. (b) Within regions, most plots share some species, but between regions, few species are shared
(levels of grey shading behind axis labels indicate region groupings, which are, from lightest to darkest: Africa, Asia, Neotropics, temperate North America). Almost
all of the shared species between regions were introduced in at least one region (purple boxes indicate pairs of plots where all shared species fell into this category).
(c) The census intervals overlapped to some extent for all pairs of plots with shared native species.
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We accounted for the influence of demographic stochasticity by using a mechanistic model that allows us to effectively
assign lower weight to rare species when estimating average synchrony. In the model, abundance dynamics are driven by a
combination of demographic stochasticity and fluctuations in population growth rates over time that are assumed to be driven
by temporal environmental stochasticity [30]. Specifically, the abundance Nx, i, t2 of species i at observation unit x at time t2 is
modelled as a random variable that is the sum of a binomial survival term and a Poisson recruitment term:

(2.1)Nx, i, t2 ∼ Bi Nx, i, t1, θx, i, t1, t2 + Pois Nx, i, t1 λx, i, t1, t2 − θx, i, t1, t2 ,

where Nx, i, t1 is the species’ initial abundance, and λx, i, t1, t2 and θx, i, t1, t2 are the population growth rate and survival rate of speciesi at observation unit x from t1 to t2. The model assumes that there is a negative correlation between survival and recruitment
rates across species, as represented by the presence of the parameter θx, i, t1, t2 in both the survival and the recruitment terms
in equation (2.1) (the quantity 1 − θx, i, t1, t2 reflects the inherent turnover rate of species i and would typically be high for
understorey shrubs and low for canopy trees). The model also assumes that survival and recruitment can be treated additively
(i.e. recruitment occurs before mortality, and new recruits do not die or contribute to reproduction in the time interval
considered). This assumption will have minimal effect on our results provided that the time interval Δt = t2 − t1 is substantially
shorter than the generation time of trees. To enable comparability across fits to data with different time intervals Δt, we
convert the λ and θ parameters for each species to an instantaneous population growth rate ρx, i, t1, t2 = 1/Δt log λx, i, t1, t2 and an
instantaneous mortality rate μx, i = − 1/Δt log θx, i, t1, t2. The model is hierarchical because these instantaneous rate parameters
are drawn randomly and independently from hyperdistributions. We assume that the random variation in μ, and hence θ,
represents life-history variation in turnover rates across species and is thus independent of time, and that the random variation
in ρ, and hence λ, represents temporal environmental stochasticity. These assumptions and the structure of equation (2.1) imply
that the effects of temporal environmental stochasticity are manifested in recruitment but not in mortality. This restriction is
necessary because of data limitations imposed by the shortness of the census time series: allowing temporal environmental
stochasticity in both recruitment and mortality would lead to parameter identifiability issues, as explained in [30] (see also [36]).
Thus, synchrony in ρ between two observation units in the model is driven by synchrony in recruitment. Following [30], we
used a lognormal distribution for μ and an asymmetric Laplace distribution for ρ.

Our model differs from that of [30] only in one crucial aspect: we replace the asymmetric Laplace distribution with its
bivariate counterpart for the set of species that are shared across the two observation units, thus allowing the population growth
rates of these species to be coupled across the observation units. We implemented the bivariate asymmetric Laplace distribution
as a transformation of a bivariate standard normal distribution with correlation parameter ζ via a copula—a multivariate
cumulative distribution function that links the underlying one-dimensional marginal cumulative distribution functions [37].
Copulas are used to model multivariate statistical phenomena in various fields, including quantitative finance. Once the
parameters of the bivariate asymmetric Laplace distribution have been estimated for a given pair of observation units, our
synchrony metric ς can be estimated by drawing a large number of pairs of population growth rates from the parameterized
distribution and calculating the correlation between them. We emphasize that the copula parameter ζ is not the parameter of
actual interest but rather a parameter that facilitates construction and fitting of a bivariate model, from which one can ultimately
estimate synchrony ς, the parameter of actual interest (over most of model parameter space, ζ is numerically very close to ς
though not exactly equal to it). In the limit of very large abundances (large Nx, i), i.e. when demographic stochasticity becomes
negligible, our method simply produces an estimate of ς that is equal to the unweighted mean of the species-specific synchrony
values (ςi). In the presence of demographic stochasticity, the method effectively gives a weighted mean with more weight
on common species, whose population growth rates are estimated with more certainty. In electronic supplementary material,
appendix S2, we describe the mathematical structure of our model in more detail.

One limitation of our model is that it assumes that all recruits arise from reproduction within a given observation unit, i.e.
it assumes that immigration constitutes a negligible fraction of the propagule rain. This assumption will be better for larger
observation units: immigrants constitute only approximately 10% of the propagule rain in a 50 ha observation unit or 20% in a
6.25 ha observation unit, but approximately 70% in a 0.16 ha observation unit [38]. To the extent that adult tree density outside
a focal observation unit differs from that within the observation unit, immigration will act as a source of noise that erodes
the signal of synchrony in population growth rates between two observation units. Thus, our synchrony estimates will tend to
underestimate true synchrony in population growth rates, particularly at smaller spatial grains, which we acknowledge as a
limitation of our methods.

Before fitting the model to data, for each pair of observation units, we took the longest time period covered by both
observation units’ census histories. For the local analyses, this was simply the entire census history (28 years at BCI and 19 years
at Pasoh), because all quadrats in a plot are included in each census. For the regional and global analyses, this often involved
trimming the census history of one or both plots. For example, in the global analysis, we had census data for Pasoh spanning
1987−2006 and for Lambir spanning 1993−2008, so the comparison period for Pasoh versus Lambir was 1993−2006. In most
cases, interpolation of abundances at one or both observation units was necessary to match the start and end dates (t1 and t2)
of a comparison period. We did this by taking the two censuses with census dates closest to the comparison start or end date,
and using these to interpolate the abundances at the start or end date, assuming constant mortality and recruitment rates for
each species between the two censuses (electronic supplementary material, appendix S2). We performed a similar interpolation
procedure for numbers of survivors of each species from the start to the end date (electronic supplementary material, appendix
S2), as these values were also needed as model inputs to allow separate estimation of the survival and recruitment terms in
equation (2.1).

We fitted the model to the data for each pair of observation units with at least one shared species by maximizing the
likelihood of the hierarchical model using a Gibbs sampler with a Metropolis update rule [39–41] (see electronic supplementary
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material, appendix S2). Given observed abundances NA, i, t1, NA, i, t2, NB, i, t1 and NB, i, t2 for each species i present at two observation
units (A and B) and at each of two timepoints t1 and t2, as well as the number of survivors of each species at each observation
unit from timepoint t1 to t2, the fitting process estimates the five parameter values of the two hyperdistributions (two for the
lognormal and three for the asymmetric Laplace) at each observation unit, the copula parameter ζ linking the asymmetric
Laplace distributions of population growth rates for shared species across the two observation units, as well as the instantane-
ous population growth rate for each species present at the two observation units (ρA, i and ρB, i) and the corresponding mortality
rates (μA, i and μB, i). Thus, the total number of estimated parameters is 2 2 + 3 + 1 + 2 SA + SB , where SA and SB are the number
of species present at observation units A and B, respectively. The estimate of the copula parameter ζ is mainly informed by the
shared species across two observation units, although the non-shared species have an indirect influence because they inform
the estimates of model parameters other than ζ, which are algebraically linked to ζ via the likelihood function (electronic
supplementary material, appendix S2).

We provide details on the fitting procedure with the Gibbs sampler in electronic supplementary material, appendix S2.
A workflow diagram of our method for estimating synchrony is shown in electronic supplementary material, figure S4. We
validated our method by fitting the model to simulated data with known synchrony (electronic supplementary material, figure
S5). We also tested the robustness of the synchrony metric ς to census intervals of different lengths using our local-scale data
(BCI and Pasoh).

(d) Assessing the relationship between synchrony and distance
After estimating synchrony values at a given scale (local, regional or global), we fitted power-law decay functions to quantify
how synchrony between forest communities depends on geographical distance. Prior to fitting the power laws, we transformed
synchrony values from the interval − 1, 1  to the interval − ∞,∞  using z = tan ςπ/2 . This transformation serves two purposes:
it ensures that synchrony values from the fitted models cannot be outside the range − 1, 1  and it improves model fits because
near ς = − 1 and ς = 1 the estimate of z is close to unbiased, whereas the estimate of ς from our maximum likelihood procedure is
slightly biased towards 0 (see §3). We estimated confidence intervals on the decay functions by bootstrapping over observation
units [42]. In addition to fitting power laws, we also fitted smoothing splines to the data to assess potential idiosyncratic trends
in synchrony with geographical distance.

3. Results
(a) Local analyses
Estimated synchrony among populations of tree species within each of our two ForestGEO plots used for the local analyses
(BCI and Pasoh) was positive and generally high. At the largest spatial grain (6.25 ha), across all pairs of observation units, the
estimated value of the synchrony metric ς was on average 0.80 and 0.68 for the 1 and 10 cm DBH thresholds, respectively, at BCI
(inter-census interval = 28 years), and 0.72 and 0.59 at Pasoh (inter-census interval = 19 years) (figure 2). Estimates of synchrony
were robust to the length of the inter-census interval used (electronic supplementary material, figure S6). At the smaller spatial
grains (1 and 0.16 ha), estimated synchrony at both plots was somewhat lower (electronic supplementary material, figures S7
and S8), which we attribute to the effects of higher per capita immigration at these grains (see §2).

Distance decay in synchrony was broadly similar across the two plots and spatial grains. For trees with ≥10 cm DBH, at BCI,
the estimated decay was 27% per order of magnitude of distance at the 6.25 ha spatial grain, and 29% at the 1 ha spatial grain; at
Pasoh the corresponding estimates were 27 and 17%. For trees with ≥1 cm DBH, the decay estimates at BCI were 17, 29 and 30%
for the 6.25, 1 and 0.16 ha spatial grains, and at Pasoh they were 38, 44 and 36%.

(b) Regional analysis
In the regional analysis (the 1 ha Marena plots in central Panama), over 90% of plot pairs had shared species and could be
included in the analysis: of these, the mean number of shared species at the 10 cm DBH threshold was 30.4, and at the 1 cm DBH
threshold was 16.3 (recall that the census area was smaller at the lower DBH threshold). The most frequently occurring species
were Virola sebifera at the 10 cm DBH threshold (39 out of 47 plots) and Sorocea affinis at the 1 cm DBH threshold (33 out of 34
plots).

Synchrony at the regional scale (Marena plots) was high at the shortest distances (<0.5 km) but substantially lower at the
longest distances (>200 km) (figure 3). Although uncertainty was large for any given pair of plots, the overall trend in synchrony
across all pairs of plots was robust. The four pairs of plots separated by a distance of less than 0.5 km had estimated synchrony
values ς of on average 0.43 (1 cm DBH) and 0.52 (10 cm DBH) (figure 3), consistent with the magnitude of synchrony estimated
in the local-scale analyses (figure 2). The estimated rate of decay in synchrony over one order of magnitude of distance was 26%
for trees with ≥10 cm DBH, and 44% for trees with ≥ 1 cm DBH, comparable to the decay observed at the local scale.
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(c) Global analysis
At the global scale, our 22 plots had an average area of 29.8 ha. Eleven of the plots were in Asia, four were in temperate North
America, four were in the Neotropics, and three were in Africa (figure 1a). The time intervals between censuses used in the
analyses ranged from 2 years at Tyson Research Center (TRC) to 28 years at BCI. Our ability to measure synchrony in the
global analysis was dependent on overlap in the species composition between ForestGEO plots, most of which are hundreds or
thousands of kilometres apart, and also on overlap in the timing of the censuses to create a congruent census interval. Of the
more than 4600 species in our dataset, a total of 1132 were present at more than one plot, and 330 of these were present at more
than two plots (see electronic supplementary material, appendix S3 for more details). Unsurprisingly, most observed species
overlap was among plots within each of the four major geographical regions, with minimal overlap for different geographical
regions (figure 1b). Of the few species shared between plots in different geographical regions, most were introduced in at least
one of the regions (figure 1b). We did not exclude introduced species from our analyses, but the relatively small number of
introduced species and their low abundances meant their impact on measured synchrony, and thus the overall results, was
minimal. Most plot pairs with shared species exhibited some overlap in overall census interval (figure 1c).

Estimated synchrony varied widely across plot pairs, and in some cases across DBH thresholds for a given plot pair, but
was slightly positive on average (figure 4). Uncertainty in synchrony estimates was in most cases high because of low statistical
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Figure 2. In our local-scale analyses (using BCI and Pasoh forest plots only), spatial synchrony in forest tree dynamics was high and declined with distance (0.1−1
km). Results for trees with (a) DBH ≥1 cm and (b) DBH ≥10 cm, in quadrats of size 6.25 ha (250 × 250 m) within the BCI forest plot (blue) and the Pasoh forest
plot (red). Each point indicates the estimated average synchrony metric (Pearson correlation in population growth rates) for all species shared between two quadrats
(vertical axis) and the geographical distance between the quadrats (horizontal axis). For trees with DBH ≥1 cm (a), the average number of species shared between two
quadrats (observation units) was 212 and 618 for BCI and Pasoh, respectively; for DBH ≥10 cm (b), the corresponding numbers were 139 and 344. Whiskers indicate
the 95% credible intervals on each synchrony estimate. Solid curves show power-law fits to the overall relationship between synchrony and distance, with shaded
regions showing 95% confidence intervals. Dashed curves (almost perfectly coinciding with the solid curves on these graphs) show smoothing splines.
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power (attributable to the low number of shared species between most pairs of plots). The estimated rates of decay in synchrony
over one order of magnitude of distance were 68% for trees of ≥10 cm DBH and 34% for trees of ≥1 cm DBH, but uncertainty in
these values was again high.
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4. Discussion
We have shown for the first time pervasive large-scale synchrony in tree species’ population growth rates, from local to global
scales (figure 5). Broadly, there are two classes of mechanism that can drive synchrony in a species’ population dynamics across
space: the environment and dispersal [1,18]. The former is referred to as the Moran effect, after Moran [15], who showed that
in the special case that the logarithm of species’ abundance follows linear dynamics with environmental noise, the expected
synchrony in population dynamics is exactly equal to the synchrony in the environmental variable. Nonlinearities in population
dynamics refine this picture but do not fundamentally change the expectation of a close correspondence between synchrony
in population growth and environmental variables [23]. In our tree population data, we estimated synchrony in population
growth rates to be of the order of ς = 0.5 (Pearson correlation) at scales of hundreds of kilometres and to be detectably positive
even at scales of thousands of kilometres (figure 5). Synchrony in climate variables extends up to thousands of kilometres,
with ‘teleconnections’ at the largest scales associated with phenomena such as the El Niño-Southern Oscillation [43]. The
magnitude of synchrony in rainfall and synchrony in temperature varies globally and is not strictly distance-dependent, but it is
consistently greater than r = 0.5 (Pearson correlation) at scales of 100 km [22] and is thus sufficient to explain our observed tree
population synchrony. Spatial synchrony in other climate variables, such as winds from hurricanes [44] and typhoons [45], may
also play a role, but our sample size (22 plots at the global scale) is too low to pinpoint the exact climate drivers with statistical
confidence. Future studies with data from more plots may facilitate this.

The alternative explanation of dispersal being the primary driver of population dynamics [18] is not plausible for our forest
communities. Dispersal-induced synchrony can occur because exchange of individuals between observation units tends to
equalize population density and, assuming density-dependent dynamics, this tends to equalize population growth rates [18].
These effects cannot account for the high synchrony observed in our data because tree population density varied broadly
across observation units at all scales. For example, within the 50 ha BCI plot, the average coefficient of variation in a tree
species’ density over quadrats was greater than 0.6 at all three spatial grains. A further piece of evidence against the dispersal
hypothesis is that we even observed statistically detectable synchrony between pairs of plots that are biogeographically isolated
from each other. For example, the Fushan and Gutianshan plots are separated by a total distance of 600 km, including the 180
km Taiwan Strait, and yet estimated synchrony between the two plots was high (figure 4).

Perhaps counterintuitively, in our data, the effect of dispersal is actually to erode the signal of synchrony, particularly for
small observation units. The reason is that our model assumes immigrant propagules are a small fraction of total propagules
at an observation unit and can thus be ignored when calculating the population growth rate, an assumption which for trees
likely only holds at spatial grains above 1 ha. This effect is clearly visible in our analyses at different spatial grains at the
local scale (electronic supplementary material, figures S7 and S8; figure 5). Because of these immigration effects, our estimates
of synchrony represent lower bounds on true synchrony in population growth rates, especially in our regional-scale analysis
where our maximum spatial grain was constrained by the small plot sizes: 1 ha for trees with DBH ≥10 cm and 0.16 ha for trees
with DBH ≥1 cm. Based on comparisons of measured synchrony across spatial grains in our local-scale analyses (figures 2 and 5;
electronic supplementary material, figures S7 and S8), we can infer that true synchrony at the regional scale (i.e. the synchrony
that would be observed at a larger spatial grain where the effects of immigration become negligible) is substantially higher than
the measured values. For example, we infer true synchrony of ς ≈ 0.4 for trees with DBH ≥10 cm at a distance of 20 km (from
figure 5b).

The drivers of synchrony may be more complicated for tree species impacted by spatially synchronized intertrophic
interactions, in particular pest and pathogen outbreaks. For example, Dutch elm disease has driven widespread declines of the
tree species Ulmus americana and Ulmus rubra in North America over nearly a century [46]. This disease has been implicated in
these two tree species’ declines at our SCBI plot [47], and the same two species have also declined at our other North American
plots. However, even for insect outbreaks, the weight of evidence points mainly towards the Moran effect, rather than dispersal,
as the main driver of synchrony [48–50]. Thus, even in cases where the proximate driver of spatial synchrony in tree population
dynamics is a pest or pathogen, the ultimate driver may still be the Moran effect. A final set of additional potential drivers of
synchrony in tree population dynamics are anthropogenic influences. Although these could be broadly construed as a subclass
of intertrophic interactions, they warrant separate consideration. A case in point is the species Aquilaria malaccensis, which has
declined consistently over time at all three of our Asian ForestGEO plots where it is present and it is known to be illegally
harvested for agarwood [51] in at least one of these plots. Air pollution is another spatially correlated human impact that can
impact trees’ vital rates [52]. The relative importance of these anthropogenic drivers, versus the Moran effect, for synchrony in
tree population dynamics is a topic for further study.

Our estimates of spatial synchrony in forest dynamics can inform metapopulation models that seek to estimate species’
extinction risk. Populations whose dynamics are highly synchronized over their geographical range are at greater risk of
extinction because the constituent subpopulations tend to decline together [2,3]. The median global range size of tree species
found in Panama is 6.9 × 105 km2 [53], corresponding to a linear range extent of the order of 1000 km, a distance at which
we estimated average synchrony in population dynamics to be positive but with very broad credible intervals (figure 4),
suggesting that a species with median range size may be buffered from extinction by spatially desynchronized population
fluctuations. Nevertheless, 16.2% of Panama tree species have a range size of less than 20 000 km2, corresponding to a linear
range extent closer to 100 km, a scale at which synchrony is detectable with more statistical certainty (figure 3), suggesting
greater vulnerability to extinction of this subgroup.

Our novel statistical method for assessing synchrony of population dynamics across observation units, using an average
metric for multiple species, is broadly applicable to datasets involving large numbers of species with time series of abundances
that are short relative to the temporal autocorrelation period of population dynamics. In such cases, standard time-series
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analysis methods for single populations [33] are not applicable because there are too few independent data points. A strength
of our method is that the fitting procedure implicitly gives each species an appropriate weight that is inversely related to the
uncertainty in its population growth rate (electronic supplementary material, appendix S2); for rare species, this uncertainty
is greater because of demographic stochasticity, and the weights are thus lower (electronic supplementary material, appendix
S2). An alternative and simpler method would be just to discard rare species below some abundance threshold and to look at
synchrony in the population growth rates of the common species [29], obviating the use of mechanistic models and likelihood
maximization. But this approach discards valuable information contained in the dynamics of the rare species shared between
observation units: rare species typically compose the majority of shared species in diverse tropical tree communities, particu-
larly in small forest plots (≤1 ha). Our methods are also robust to the time interval between censuses (electronic supplementary
material, figure S6): synchrony between a pair of observation units fluctuates over time (as has also been observed for mammal
populations [54]), but these fluctuations are small relative to the average value.

There are several caveats to our method. Firstly, our method assumes that environmental stochasticity affects recruitment
but not mortality. This assumption is necessary owing to data limitations associated with short time series but appears to be
justified [30]. As noted, our method also does not account for the effects of immigration, but the direction of the bias arising
from immigration is known (it is towards lower synchrony; see §2), and the bias can in principle be minimized by using larger
observation units. Another limitation of our method is that, by design, it gives an average synchrony value across all shared
species between two observation units (ς). This masks potential interspecific variation in synchrony, which may be of biological
interest but could only be explored with longer time series (enabling species-specific estimates of synchrony, ςi).

Our results also have implications for species coexistence theory [55–57]. Traditional explanations for high tropical tree
diversity have focused on equilibrium models of isolated forest plots. Such explanations include Janzen–Connell effects and
resource niches [55,58]. But it is increasingly recognized that tree populations are incredibly dynamic and are interconnected
with conspecific populations throughout the landscape [6,30,31,59]. Extending the perspective of coexistence theory to regional
and continental scales requires knowledge of how local tree populations in different places fluctuate relative to one another over
a range of spatial extents—estimates of which we have provided here. We noted above that range-restricted tree species will
be especially vulnerable to extinction owing to synchronized population dynamics. Our synchrony estimates place constraints
on the minimum strength of coexistence mechanisms required for range-restricted species to coexist at the landscape scale with
widespread species whose fluctuations are buffered by metapopulation effects.

Ethics. This work did not require ethical approval from a human subject or animal welfare committee.
Data accessibility. Code and data for running analyses have been deposited in Zenodo [60].

Supplementary material is available online [61].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. R.A.C.: conceptualization, data curation, funding acquisition, methodology, writing—original draft, writing—review and
editing; T.F.: data curation, methodology, writing—review and editing; K.J.A.-T.: data curation, writing—review and editing; N.A.B.: data
curation; W.Y.B.: data curation; S.B.: data curation; C.-H.C.-Y.: data curation; Y.-Y.C.: data curation; G.B.C.: data curation; R.C.: writing—review
and editing; H.S.D.: data curation; S.J.D.: writing—review and editing; S.E.: data curation; C.E.N.E.: data curation; E.S.F.: data curation;
I.A.U.N.G.: data curation; C.V.S.G.: data curation; Z.H.: data curation; R.W.H.: data curation; D.K.: data curation; T.L.Y.: data curation; J.-R.M.:
data curation; S.M.M.: data curation, writing—review and editing; X.M.: data curation; M.B.M.: data curation; J.A.M.: data curation, writing—
review and editing; A.N.: data curation; Á.J.P.: data curation; S.P.: data curation; N.P.: data curation; H.R.: data curation; L.J.V.R.: data curation;
R.S.: data curation; I.-F.S.: data curation; H.S.S.: data curation; D.W.T.: data curation; J.T.: data curation, writing—review and editing; M.U.: data
curation; R.V.: data curation; X.W.: data curation; A.T.W.: data curation; J.K.Z.: data curation.

All authors gave final approval for publication and agreed to be held accountable for the work performed herein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. R.A.C. and T.F. acknowledge support from Singapore’s Ministry of Education (grant number WBS A-8001046-00-00).
Acknowledgements. We thank David Nott for helpful discussions. A full list of acknowledgements for each ForestGEO plot is provided in electronic
supplementary material, appendix S1.

References
1. Lande R, Engen S, Sæther BE. 1999 Spatial scale of population synchrony: environmental correlation versus dispersal and density regulation. Am. Nat. 154, 271–281. (doi:10.1086/

303240)
2. Harrison S, Quinn JF. 1989 Correlated environments and the persistence of metapopulations. Oikos 56, 293–297. (doi:10.2307/3565613)
3. Heino M, Kaitala V, Ranta E, Lindström J. 1997 Synchronous dynamics and rates of extinction in spatially structured populations. Proc. R. Soc. Lond. B 264, 481–486. (doi:10.1098/

rspb.1997.0069)
4. Walter JA et al. 2021 The spatial synchrony of species richness and its relationship to ecosystem stability. Ecology 102, e03486. (doi:10.1002/ecy.3486)
5. Kalyuzhny M, Seri E, Chocron R, Flather CH, Kadmon R, Shnerb NM. 2014 Niche versus neutrality: a dynamical analysis. Am. Nat. 184, 439–446. (doi:10.1086/677930)
6. Fung T et al. 2020 Temporal population variability in local forest communities has mixed effects on tree species richness across a latitudinal gradient. Ecol. Lett. 23, 160–171. (doi:

10.1111/ele.13412)
7. Fung T, Pande J, Shnerb NM, O’Dwyer JP, Chisholm RA. 2024 Processes governing species richness in communities exposed to temporal environmental stochasticity: a review and

synthesis of modelling approaches. Math. Biosci. 369, 109131. (doi:10.1016/j.mbs.2023.109131)
8. Pollard E. 1991 Synchrony of population fluctuations: the dominant influence of widespread factors on local butterfly populations. Oikos 60, 7–10. (doi:10.2307/3544985)
9. Hanski I, Woiwod IP. 1993 Spatial synchrony in the dynamics of moth and aphid populations. J. Anim. Ecol. 62, 656–668. (doi:10.2307/5386)
10. Sutcliffe OL, Thomas CD, Moss D. 1996 Spatial synchrony and asynchrony in butterfly population dynamics. J. Anim. Ecol. 65, 85–95. (doi:10.2307/5702)

10

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240486

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 N

ov
em

be
r 

20
24

 

http://dx.doi.org/10.1086/303240
http://dx.doi.org/10.1086/303240
http://dx.doi.org/10.2307/3565613
http://dx.doi.org/10.1098/rspb.1997.0069
http://dx.doi.org/10.1098/rspb.1997.0069
http://dx.doi.org/10.1002/ecy.3486
http://dx.doi.org/10.1086/677930
http://dx.doi.org/10.1111/ele.13412
http://dx.doi.org/10.1016/j.mbs.2023.109131
http://dx.doi.org/10.2307/3544985
http://dx.doi.org/10.2307/5386
http://dx.doi.org/10.2307/5702


11. Myers RA, Mertz G, Bridson J. 1997 Spatial scales of interannual recruitment variations of marine, anadromous, and freshwater fish. Can. J. Fish. Aquat. Sci. 54, 1400–1407. (doi:10.
1139/f97-045)

12. Botsford LW, Moloney CL, Hastings A, Largier JL, Powell TM, Higgins K, Quinn JF. 1994 The influence of spatially and temporally varying oceanographic conditions on
meroplanktonic metapopulations. Deep Sea Res. II Top. Stud. Oceanogr. 41, 107–145. (doi:10.1016/0967-0645(94)90064-7)

13. Lindström J, Ranta E, Lindén H. 1996 Large-scale synchrony in the dynamics of capercaillie, black grouse and hazel grouse populations in Finland. Oikos 76, 221–227. (doi:10.2307/
3546193)

14. Koenig WD. 1998 Spatial autocorrelation in California land birds. Conserv. Biol. 12, 612–620. (doi:10.1111/j.1523-1739.1998.97034.x)
15. Moran PAP. 1953 The statistical analysis of the Canadian lynx cycle. Aust. J. Zool. 1, 291–298. (doi:10.1071/ZO9530291)
16. Grenfell BT, Wilson K, Finkenstädt BF, Coulson TN, Murray S, Albon SD, Pemberton JM, Clutton-Brock TH, Crawley MJ. 1998 Noise and determinism in synchronized sheep dynamics.

Nature 394, 674–677. (doi:10.1038/29291)
17. Bolker BM, Grenfell BT. 1996 Impact of vaccination on the spatial correlation and persistence of measles dynamics. Proc. Natl Acad. Sci. USA 93, 12648–12653. (doi:10.1073/pnas.93.

22.12648)
18. Liebhold A, Koenig WD, Bjørnstad ON. 2004 Spatial synchrony in population dynamics. Annu. Rev. Ecol. Evol. Syst. 35, 467–490. (doi:10.1146/annurev.ecolsys.34.011802.132516)
19. Satake A, Iwasa Y. 2002 Spatially limited pollen exchange and a long-range synchronization of trees. Ecology 83, 993–1005. (doi:10.1890/0012-9658(2002)083[0993:SLPEAA]2.0.

CO;2)
20. Vasseur DA, Fox JW. 2009 Phase-locking and environmental fluctuations generate synchrony in a predator–prey community. Nature 460, 1007–1010. (doi:10.1038/nature08208)
21. Haynes KJ, Bjørnstad ON, Allstadt AJ, Liebhold AM. 2013 Geographical variation in the spatial synchrony of a forest-defoliating insect: isolation of environmental and spatial drivers.

Proc. R. Soc. B 280, 20122373. (doi:10.1098/rspb.2012.2373)
22. Koenig WD. 2002 Global patterns of environmental synchrony and the Moran effect. Ecography 25, 283–288. (doi:10.1034/j.1600-0587.2002.250304.x)
23. Blasius B, Stone L. 2000 Nonlinearity and the Moran effect. Nature 206, 846–847. (doi:10.1038/35022646)
24. Koenig WD, Mumme RL, Carmen WJ, Stanback MT. 1994 Acorn production by oaks in central coastal California: variation within and among years. Ecology 75, 99–109. (doi:10.

2307/1939386)
25. Koenig WD, Knops JMH. 2000 Patterns of annual seed production by Northern Hemisphere trees: a global perspective. Am. Nat. 155, 59–69. (doi:10.1086/303302)
26. Ashton PS, Givnish TJ, Appanah S. 1988 Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics.

Am. Nat. 132, 44–66. (doi:10.1086/284837)
27. Ostling AM. 2012 Large-scale spatial synchrony and the stability of forest biodiversity revisited. J. Plant Ecol. 5, 52–63. (doi:10.1093/jpe/rtr035)
28. Shestakova TA et al. 2016 Forests synchronize their growth in contrasting Eurasian regions in response to climate warming. Proc. Natl Acad. Sci. USA 113, 662–667. (doi:10.1073/

pnas.1514717113)
29. Condit R, Aguilar S, Hernandez A, Perez R, Lao S, Angehr G, Hubbell SP, Foster RB. 2004 Tropical forest dynamics across a rainfall gradient and the impact of an El Niño dry season. J.

Trop. Ecol. 20, 51–72. (doi:10.1017/S0266467403001081)
30. Chisholm RA et al. 2014 Temporal variability of forest communities: empirical estimates of population change in 4000 tree species. Ecol. Lett. 17, 855–865. (doi:10.1111/ele.12296)
31. Kalyuzhny M, Kadmon R, Shnerb NM. 2015 A neutral theory with environmental stochasticity explains static and dynamic properties of ecological communities. Ecol. Lett. 18, 572–

580. (doi:10.1111/ele.12439)
32. Fung T, O’Dwyer JP, Rahman KA, Fletcher CD, Chisholm RA. 2016 Reproducing static and dynamic biodiversity patterns in tropical forests: the critical role of environmental variance.

Ecology 97, 1207–1217. (doi:10.1890/15-0984.1)
33. Gouhier TC, Guichard F. 2014 Synchrony: quantifying variability in space and time. Methods Ecol. Evol. 5, 524–533. (doi:10.1111/2041-210X.12188)
34. Condit R. 1998 Tropical forest census plots: methods and results from Barro Colorado Island, Panama and a comparison with other plots. Berlin, Germany: Springer-Verlag.
35. Condit R, Pérez R, Aguilar S, Lao S. 2019 Census data from 65 tree plots in Panama, 1994-2015. Dryad Digital Repository. (doi:10.15146/mdpr-pm59)
36. Melbourne BA, Hastings A. 2008 Extinction risk depends strongly on factors contributing to stochasticity. Nature 454, 100–103. (doi:10.1038/nature06922)
37. Nelsen RB. 1999 An introduction to copulas. New York, NY: Springer.
38. Chisholm RA, Lichstein JW. 2009 Linking dispersal, immigration and scale in the neutral theory of biodiversity. Ecol. Lett. 12, 1385–1393. (doi:10.1111/j.1461-0248.2009.01389.x)
39. Rüger N, Huth A, Hubbell SP, Condit R. 2009 Response of recruitment to light availability across a tropical lowland rain forest community. J. Ecol. 97, 1360–1368. (doi:10.1111/j.

1365-2745.2009.01552.x)
40. Gelman A, Carlin JB, Stern HS, Rubin DB. 1995 Bayesian data analysis. Boca Raton, FL: Chapman and Hall/CRC.
41. Condit R et al. 2006 The importance of demographic niches to tree diversity. Science 313, 98–101. (doi:10.1126/science.1124712)
42. Bjørnstad ON, Ims RA, Lambin X. 1999 Spatial population dynamics: analyzing patterns and processes of population synchrony. Trends Ecol. Evol. 14, 427–432. (doi:10.1016/S0169-

5347(99)01677-8)
43. Feldstein SB, Franzke CLE. 2017 Atmospheric teleconnection patterns. In Nonlinear and stochastic climate dynamics (eds CLE Franzke, TJ O’Kane), pp. 54–104. Cambridge, UK:

Cambridge University Press.
44. Canham CD, Thompson J, Zimmerman JK, Uriarte M. 2010 Variation in susceptibility to hurricane damage as a function of storm intensity in Puerto Rican tree species. Biotropica 42,

87–94. (doi:10.1111/j.1744-7429.2009.00545.x)
45. Yap SL, Davies SJ, Condit R. 2016 Dynamic response of a Philippine dipterocarp forest to typhoon disturbance. J. Veg. Sci. 27, 133–143. (doi:10.1111/jvs.12358)
46. Brasier CM. 2000 Intercontinental spread and continuing evolution of the Dutch elm disease pathogens. In The elms: breeding, conservation, and disease management (ed. CP Dunn),

pp. 61–72. Boston, MA: Springer US.
47. Anderson-Teixeira KJ et al. 2021 Long-term impacts of invasive insects and pathogens on composition, biomass, and diversity of forests in Virginia’s Blue Ridge mountains.

Ecosystems 24, 89–105. (doi:10.1007/s10021-020-00503-w)
48. Zhang Q, Alfaro RI. 2003 Spatial synchrony of the two‐year cycle budworm outbreaks in central British Columbia, Canada. Oikos 102, 146–154. (doi:10.1034/j.1600-0706.2003.

12169.x)
49. Peltonen M, Liebhold AM, Bjørnstad ON, Williams DW. 2002 Spatial synchrony in forest insect outbreaks: roles of regional stochasticity and dispersal. Ecology 83, 3120–3129. (doi:

10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2)
50. Johnson DM, Liebhold AM, Bjørnstad ON, Mcmanus ML. 2005 Circumpolar variation in periodicity and synchrony among gypsy moth populations. J. Anim. Ecol. 74, 882–892. (doi:

10.1111/j.1365-2656.2005.00980.x)

11

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240486

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 N

ov
em

be
r 

20
24

 

http://dx.doi.org/10.1139/f97-045
http://dx.doi.org/10.1139/f97-045
http://dx.doi.org/10.1016/0967-0645(94)90064-7
http://dx.doi.org/10.2307/3546193
http://dx.doi.org/10.2307/3546193
http://dx.doi.org/10.1111/j.1523-1739.1998.97034.x
http://dx.doi.org/10.1071/ZO9530291
http://dx.doi.org/10.1038/29291
http://dx.doi.org/10.1073/pnas.93.22.12648
http://dx.doi.org/10.1073/pnas.93.22.12648
http://dx.doi.org/10.1146/annurev.ecolsys.34.011802.132516
http://dx.doi.org/10.1890/0012-9658(2002)083[0993:SLPEAA]2.0.CO;2
http://dx.doi.org/10.1890/0012-9658(2002)083[0993:SLPEAA]2.0.CO;2
http://dx.doi.org/10.1038/nature08208
http://dx.doi.org/10.1098/rspb.2012.2373
http://dx.doi.org/10.1034/j.1600-0587.2002.250304.x
http://dx.doi.org/10.1038/35022646
http://dx.doi.org/10.2307/1939386
http://dx.doi.org/10.2307/1939386
http://dx.doi.org/10.1086/303302
http://dx.doi.org/10.1086/284837
http://dx.doi.org/10.1093/jpe/rtr035
http://dx.doi.org/10.1073/pnas.1514717113
http://dx.doi.org/10.1073/pnas.1514717113
http://dx.doi.org/10.1017/S0266467403001081
http://dx.doi.org/10.1111/ele.12296
http://dx.doi.org/10.1111/ele.12439
http://dx.doi.org/10.1890/15-0984.1
http://dx.doi.org/10.1111/2041-210X.12188
http://dx.doi.org/10.15146/mdpr-pm59
http://dx.doi.org/10.1038/nature06922
http://dx.doi.org/10.1111/j.1461-0248.2009.01389.x
http://dx.doi.org/10.1111/j.1365-2745.2009.01552.x
http://dx.doi.org/10.1111/j.1365-2745.2009.01552.x
http://dx.doi.org/10.1126/science.1124712
http://dx.doi.org/10.1016/S0169-5347(99)01677-8
http://dx.doi.org/10.1016/S0169-5347(99)01677-8
http://dx.doi.org/10.1111/j.1744-7429.2009.00545.x
http://dx.doi.org/10.1111/jvs.12358
http://dx.doi.org/10.1007/s10021-020-00503-w
http://dx.doi.org/10.1034/j.1600-0706.2003.12169.x
http://dx.doi.org/10.1034/j.1600-0706.2003.12169.x
http://dx.doi.org/10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2
http://dx.doi.org/10.1111/j.1365-2656.2005.00980.x


51. Zhang L, Brockelman WY, Allen MA. 2008 Matrix analysis to evaluate sustainability: the tropical tree Aquilaria crassna, a heavily poached source of agarwood. Biol. Conserv. 141,
1676–1686. (doi:10.1016/j.biocon.2008.04.015)

52. Dietze MC, Moorcroft PR. 2011 Tree mortality in the eastern and central United States: patterns and drivers. Glob. Chang. Biol. 17, 3312–3326. (doi:10.1111/j.1365-2486.2011.
02477.x)

53. Condit R, Aguilar S, Pérez R. 2020 Trees of Panama: a complete checklist with every geographic range. For. Ecosyst. 7, 13. (doi:10.1186/s40663-020-00246-z)
54. Ranta E, Kaitala V, Lundberg P. 1998 Population variability in space and time: the dynamics of synchronous population fluctuations. Oikos 83, 376–382. (doi:10.2307/3546852)
55. Broekman MJE, Muller-Landau HC, Visser MD, Jongejans E, Wright SJ, de Kroon H. 2019 Signs of stabilisation and stable coexistence. Ecol. Lett. 22, 1957–1975. (doi:10.1111/ele.

13349)
56. Chesson P. 2000 Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366. (doi:10.1146/annurev.ecolsys.31.1.343)
57. Barabás G, D’Andrea R, Stump SM. 2018 Chesson’s coexistence theory. Ecol. Monogr. 88, 277–303. (doi:10.1002/ecm.1302)
58. Hülsmann L, Chisholm RA, Hartig F. 2021 Is variation in conspecific negative density dependence driving tree diversity patterns at large scales? Trends Ecol. Evol. 36, 151–163. (doi:

10.1016/j.tree.2020.10.003)
59. Condit R, Chisholm RA, Hubbell SP. 2012 Thirty years of forest census at Barro Colorado and the importance of immigration in maintaining diversity. PLoS One 7, e49826. (doi:10.

1371/journal.pone.0049826)
60. Chisholm RA. 2024 Data from: Assessing the spatial scale of synchrony in forest tree population dynamics. Zenodo. (doi:10.5281/zenodo.14064127)
61. Chisholm R, Fung T, Anderson-Teixeira K, Bunyavejchewin S, Chang-Yang CH, Chen YY. 2024 Supplementary material from: Assessing the spatial scale of synchrony in forest tree

population dynamics. Figshare. (doi:10.6084/m9.figshare.c.7508869)

12

royalsocietypublishing.org/journal/rspb 
Proc. R. Soc. B 291: 20240486

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

20
 N

ov
em

be
r 

20
24

 

http://dx.doi.org/10.1016/j.biocon.2008.04.015
http://dx.doi.org/10.1111/j.1365-2486.2011.02477.x
http://dx.doi.org/10.1111/j.1365-2486.2011.02477.x
http://dx.doi.org/10.1186/s40663-020-00246-z
http://dx.doi.org/10.2307/3546852
http://dx.doi.org/10.1111/ele.13349
http://dx.doi.org/10.1111/ele.13349
http://dx.doi.org/10.1146/annurev.ecolsys.31.1.343
http://dx.doi.org/10.1002/ecm.1302
http://dx.doi.org/10.1016/j.tree.2020.10.003
http://dx.doi.org/10.1371/journal.pone.0049826
http://dx.doi.org/10.1371/journal.pone.0049826
http://dx.doi.org/10.5281/zenodo.14064127
http://dx.doi.org/10.6084/m9.figshare.c.7508869

	Assessing the spatial scale of synchrony in forest tree population dynamics
	1. Introduction
	2. Methods
	(a) Data sources
	(b) Synchrony metric
	(c) Estimating synchrony
	(d) Assessing the relationship between synchrony and distance

	3. Results
	(a) Local analyses
	(b) Regional analysis
	(c) Global analysis

	4. Discussion


