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The benefits of masting (volatile, quasi-synchronous seed production at  
lagged intervals) include satiation of seed predators, but these benefits come  
with a cost to mutualist pollen and seed dispersers. If the evolution of masting  
represents a balance between these benefits and costs, we expect mast 
avoidance in species that are heavily reliant on mutualist dispersers. These 
effects play out in the context of variable climate and site fertility among 
species that vary widely in nutrient demand. Meta-analyses of published 
data have focused on variation at the population scale, thus omitting 
periodicity within trees and synchronicity between trees. From raw data on 
12 million tree-years worldwide, we quantified three components of masting 
that have not previously been analysed together: (i) volatility, defined as the 
frequency-weighted year-to-year variation; (ii) periodicity, representing 
the lag between high-seed years; and (iii) synchronicity, indicating the 
tree-to-tree correlation. Results show that mast avoidance (low volatility 
and low synchronicity) by species dependent on mutualist dispersers 
explains more variation than any other effect. Nutrient-demanding species 
have low volatility, and species that are most common on nutrient-rich and 
warm/wet sites exhibit short periods. The prevalence of masting in cold/dry 
sites coincides with climatic conditions where dependence on vertebrate 
dispersers is less common than in the wet tropics. Mutualist dispersers 
neutralize the benefits of masting for predator satiation, further balancing 
the effects of climate, site fertility and nutrient demands.

Unpredictable reproduction in trees (‘masting’) could be an evolved 
response to thwart seed consumers1–3, but a conundrum arises: the  
volatility that limits seed predators could be just as deleterious to 
mutualist pollen and seed dispersers2,4–6 while also concentrating 
competition within offspring7,8. For natural enemies and mutual-
ists alike, masting effects depend on three elements (Fig. 1): (1) 
year-to-year ‘volatility’, or the time-dependent magnitude of vari-
ation, (2) ‘quasi-periodicity’, the lag between high seed-production  
years, and (3) ‘quasi-synchronicity’, the tendency for individuals to 
produce large seed crops in the same years9. Explanations for forest 

diversity invoke combinations of these three elements10–12, but they 
operate together: the costs and benefits of masting depend on the 
interactions between them and the foraging ranges of consumers and 
dispersers9,13. Meta-analyses provide important insights at the aggregate 
population or species scale14 but miss the volatility within and synchro-
nicity between trees15–17. Efforts to generalize species- and site-specific 
results confront a diversity of methods, measurements and scales used 
in each study. In this paper, we integrate raw data at the individual-tree 
scale from all vegetated continents to allow formal inference on the 
joint distribution of masting components. We show that variation in 
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masting components across the diversity of tree species depends on how 
seeds and pollen are dispersed, indicating that mutualists may be just 
as important as consumers for the evolution of masting. Results show 
mediation of these effects by climate, soil fertility and nutrient demand.

We introduce specific definitions for volatility and periodicity that 
emphasize the contributions of low-frequency (long-period) variation. 
The masting phenomenon is remarkable (and important) because it 
does not simply reoccur each year; it is frequency-dependent, with 
low-frequency variation being especially important for its effects on 
animal dispersers and consumers. We define frequency-dependent 
variation as ‘volatility’ to avoid confusion with the term ‘variance’ (and 
its derivatives, ‘variation’ and ‘variability’), which does not depend on 
time. Volatility emphasizes the contribution of variance that is concen-
trated at low frequency (long time lags). In the context of our analysis, 
‘periodicity’ likewise emphasizes variance that is concentrated at  
low frequency. In both cases, variance is determined as a function  
of frequency, followed by transformation to frequency-weighted  
volatility and periodicity (see Methods).

The adaptive foundation for masting may involve escape from 
natural enemies that are satiated by large, quasi-synchronized crops 
and limited by intervening lean years18,19, but this same variation can like-
wise negatively impact mutualists (Fig. 2a). Scatter-hoarding birds and 
rodents can be both seed predators and mutualists, consuming the entire 
seed crop in some years while also aiding reproduction through seed 
burial20. Predator satiation is most likely with high reproductive volatility, 
long periods between high-yield years and synchronicity between trees; 
this synchronicity reduces a consumer’s capacity to simply average over 
interannual variation in one host tree by accessing others9,13 (Fig. 2a). 
For example, erratic seed production by individual trees (volatile and 
quasi-periodic) may not deter natural enemies if high-production years 
are asynchronous between trees9. Any negative effects of quasi-periodic 
variation on a tree’s consumers would be amplified by high year-to-year 
variation, especially when concentrated at long lags2,21, again, defined 
here as ‘volatility’. Weighing against the benefits of unreliable fruiting 
for its deleterious effects on enemies are the negative effects on mutual-
ist dispersers2,4,22; the predator satiation hypothesis might not benefit 
species that are reliant on specialized pollinators and seed dispersers.
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Fig. 1 | Illustration of three masting components for representative trees 
species from the central Cascades, USA. a,b, Crop counts for P. monticola and 
A. grandis vary between individual trees and drift over time. c, The frequency of 
counts in both species shows that zeros dominate, and there is no threshold that 
could be used to define masting events. d, Mean pairwise correlations between 

trees and their standard deviations are used to demonstrate quasi-synchronicity 
in both species. e, The volatility and period are shown beneath species name.  
A. grandis shows higher synchronicity between individuals (d) and higher 
volatility, especially concentrated at the 2 yr period in e. P. monticola also shows 
variance concentrated at 2 yr, with a secondary peak at 3.4 yr (e).

While volatility amplifies the effects of periodicity and synchronicity 
on enemies and benefactors alike, this same volatility could be mediated 
by resource availability and climate21,23 (Fig. 2a). Limited resources might 
promote reproductive variation in trees24–26 or not27. The mast interval 
could be prolonged where large crops deplete reserves that require 
years to replenish21,28–30 or not14,27. In this global analysis, we use cation 
exchange capacity (CEC), a widely used index of soil fertility31,32, and 
foliar nitrogen (N) and phosphorous (P) concentrations27 to quantify the 
association between masting and resource supply (CEC) and resource 
demand: nutrient-demanding species tend to have high foliar N and P33.

In addition to site differences in resources and climate norms, 
weather anomalies might contribute to large seed crops (for exam-
ple, ref. 34), especially for species with limited dependence on stored 
reserves1,23 (Fig. 2a). An ‘anomaly’ is defined here as the difference 
between a climate variable in a given year and the average of that vari-
able for that site (the site ‘norm’). At least for a few species at one or a 
few sites, warm and wet years may be associated with low seed produc-
tion35–39 and increased reproductive synchronicity40,41 (Fig. 2a).

Because the distribution of species across environments is uneven, 
species differences cannot be fully assessed from observational data, 
which dominate the masting literature. Climate anomalies in specific 
seasons are clearly important for many temperate species38,40–42, but our 
analysis evaluates variation globally, spanning seasonal and aseasonal 
environments. The effect of a climate anomaly such as temperature 
or moisture must depend on the climate norm at each site, including 
seasonality. For example, the estimated effect of a spring-time tem-
perature anomaly of 1 °C is not comparable between highly seasonal 
taiga and the aseasonal wet tropics where the notion of spring is not 
relevant. Including an interaction between anomalies and norms in 
data models cannot clarify their respective contributions because 
species are not observed across the same combinations of norms and 
anomalies in the data. For this reason, environmental anomalies are 
limited here to annual variation in temperature and moisture deficit, 
and comparisons between species in Fig. 2a include the caveat that we 
are not observing all of them in all of the same settings.

The three components of masting have not been analysed 
together, in part because a joint analysis requires substantial data 
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at the individual (tree-year) scale. Unless individuals are perfectly 
synchronized, periodicity at the population scale underestimates 
periodicity at the individual scale; in fact, asynchronicity can entirely 
mask periodic reproduction where observed with population-scale 
data. Studies that examine both individual and population variation 
show that fecundity is typically quasi-synchronous at best9,15,17,43,44. 
Understanding spatial scales45, allocation trade-offs46,47, responses to 
climate39,42,48–50, and effects on consumers9,51 and dispersers2,4 all require 
joint analysis of reproductive variance within and between individuals.

Synthesis is challenged not just by the incompatible reference 
used in literature studies (Supplementary information), but also by a 
need for measures of volatile, periodic and synchronous variability. All 
three elements vary between species and regions. The commonly used  
coefficient of variation (CV) omits time and frequency, two of the defin-
ing features of masting, and applications of CV to log values cannot 
properly incorporate zeros. This is important because zero is the most 
frequent observation in many data sets (for example, Fig. 1c) (Supple-
mentary information). Estimating periodicity requires a definition of 
what constitutes a mast year30,52–54, which is challenging because there 
is no identifiable threshold (for example, Fig. 1c) despite detectable 
indicators on trees (for example, twigs hanging from seed weights) and 
peaked seed numbers in Fig. 1a,b. The interval between mast years that 
would come from imposing an artificial threshold can range widely, 
in part due to variation within and between trees55,56. Using methods 
developed in this study, Pinus monticola (Fig. 1a) and Abies grandis  
(Fig. 1b) share biennial variation but differ in the secondary concentra-
tion of variance at 3–4 yr in P. monticola. The period-weighted variance 
spectrum (to emphasize low frequency) gives estimates of 2.4 and 3.2 yr in 
 P. monticola and A. grandis, respectively (Fig. 1e). Not only are both  
species strongly biennial, they are also quasi-synchronous, with mean 
pairwise individual correlations being especially high for A. grandis  
(0.72 ± 0.12 compared with 0.60 ± 0.27 in P. monticola) (Fig. 1d). Quasi- 
synchronicity between trees within a species can extend over regions40,41,45, 
but it is not global. In our case, regional variation is defined at the eco-
region scale and synchronicity is evaluated at the 1 km scale (Methods).

Our approach that leads to the summaries in Fig. 1 takes the 
perspective of each tree as a time series, with dependence between 

individuals from the same species, using a state–space representa-
tion for maturation and fecundity status16,42. A model that allows for 
dependent observations is especially important for masting, where 
synchronicity means that a single individual may offer almost the 
same information as an entire population. In our approach, dependent 
observations are taken up by the correlation structure contained in 
the posterior distribution of latent states, one for each tree-year. The 
approach can allow for either year effects or autoregressive [AR(p) 
with lag p] terms as alternative ways to incorporate variation over time. 
Zeros are accommodated by a hidden Markov process for maturation 
status and allowance for failed crops with censoring (see Methods). 
Year effects that are random by ecoregion have the advantage that 
they do not assume a fixed AR structure over time9.

In three steps, we evaluated masting across species with contrast-
ing reliance on mutualist dispersers at the global scale, and how the 
relationship between masting and mutualists varies with resources, 
climate and phylogeny. We hypothesized that mutualist pollinators 
and dispersers select for low volatility, short periods and low synchro-
nicity2,4,9 (Fig. 2a). We expected that nutrient-demanding species and 
species that commonly occur on fertile sites tend toward low volatility,  
rapid replenishment times following large crops and, thus, short  
periods23,29 (Fig. 2a). We further hypothesized that warm climates favour 
low volatility and high synchronicity2,14,40, while dry climates (high 
moisture deficit) favour high volatility and synchronicity41,45 (Fig. 2a).  
To test these hypotheses, we begin by extracting the three compo-
nents of masting (Fig. 1) from interannual and inter-tree variation9 
using methods that derive from signal processing for the time-series 
aspect of data and tree-to-tree correlation. Second, individual time 
series were aggregated by ecoregion–species, weighted by fecundity 
to emphasize large producers57,58 (Methods). Finally, we evaluated the 
effects of pollen and seed dispersal modes, resources and climate on 
the joint response of masting components, both including and control-
ling for phylogeny.

Results
Across all species in the study, dependence on mutualist dispersers 
is linked to low masting volatility (Fig. 3a). Volatility for species that 
depend on animals for seed and/or pollen dispersal is substantially 
lower than that for wind-pollinated flowers and wind-dispersed seeds. 
The link between volatility and dispersal syndrome is mediated by 
resources and climate (Fig. 3a). In addition to wind dispersal (the posi-
tive mirror images of negative AD and AP in Fig. 3a), high volatility is 
associated with low nutrient demand (low foliar P and N:P) and with 
fertile soils (cation exchange capacity, CEC in Fig. 3a). Of course, there is 
within-species variation in response to fertility58, which is distinct from 
the mean CEC on which species are located, as used in this study. There 
is a weak tendency for high volatility in cold, moist climates (credible 
intervals include zero for Temp and Def in Fig. 3a). High volatility is 
further associated with small seeds (SM < 0).

The volatility relationships are not isolated from the two other com-
ponents of masting. High periodicity values in Fig. 3b mean that there 
are long periods between high-yield years. High synchronicity values 
in Fig. 3c mean that individuals produce large crops in the same years 
and vice versa. Because period and synchronicity are important only 
for trees with non-negligible seed production, both are weighted here 
by individual fecundity (see Methods). In the case of synchronicity, the 
distribution of pairwise correlations for trees of the same species within 
1 km of one another (see Methods) has the mode near +1 but is broadly 
distributed over negative and positive values (Fig. 4a). When aggregated 
to the species level (averaged over pairwise correlations for the species), 
the distribution shifts to predominantly positive values (Fig. 4b, red). 
When weighted by fecundity, these averages increase further (Fig. 4b, 
blue) because large producers have the highest levels of synchronicity.

The long periods associated with animal seed dispersal (Fig. 3b) 
may not have meaningful effects on consumers or mutualists because 
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(a). Resources reduce volatility and periodicity (a). High temperature decreases 
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from the joint model in Fig. 3. Dashed lines indicate that 90% credible intervals 
contain zero while 68% credible intervals do not.
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these species are weakly synchronized (Fig. 3c). For consumers that 
can move between host trees, weak synchronicity means that there 
will be individuals producing seed in many years. Short periods are 
associated with warm, wet, fertile sites (negative Temp and CEC, posi-
tive Def in Fig. 3b). The quasi-synchronicity that is strongest for wind 
dispersal is amplified in cold, dry climates (negative AD and Temp, 
positive Def in Fig. 3c).

The most volatile species are not those having the highest sensitiv-
ity to climate anomalies. It is important to first note that climate anoma-
lies make large contributions to variation in many species, both positive 
and negative (large coefficients in Fig. 5c,d). The absolute values of 
anomaly responses (Fig. 5a) summarize both positive and negative 
sensitivity to moisture deficit and temperature anomalies (Fig. 5a,b). 
The coefficients are less meaningful for low-volatility species because 
there is less total variation that could be driven by climate or intrinsic 
factors. Thus, the positive log volatility values in Fig. 5 are most telling 
and, at log volatility above zero, absolute sensitivity declines on average 
for both climate variables (Fig. 5a,b). Because few animal-dispersed 
species are highly volatile, the trends in these high values are driven 
more by wind-dispersed species (blue symbols) with low foliar N:P 
(small symbols). For animal-dispersed species, moisture-deficit  
sensitivities shift from negative to positive with increasing volatility 

(Fig. 5c, orange, green). For both dispersal modes (wind versus ani-
mals), temperature sensitivities trend from negative to near-zero with 
increasing volatility (Fig. 5d).

All elements of the three-part syndrome have phylogenetic 
dependence, which is especially strong for volatility and periodicity 
and less so for synchronicity (Fig. 6). Volatility is the highest in the 
temperate clades Pinales, Fagales and Sapindaceae (prominent excep-
tions include the shrub maples Acer pensylvanicum and A. spicatum). 
The wind-pollinated and (primarily) wind seed-dispersed genera Abies 
and Betula are near the highest volatility and the shortest period. 
Other volatile, wind-dispersed temperate groups include the Ulmaceae 
(Ulmus, Zelkova). Volatile animal-dispersed groups include the gen-
era Ficus, Swida and Nyssa. Synchronicity is especially high in many  
of the Pinales and Fagales. Low volatility is common in the tropical 
groups Fabales, Malpighiales and Gentianales. For groups with mixed 
tropical/temperate affinities, volatility tends to be low in Magnoliids, 
Ericales and Cornales. Periodicity and synchronicity of most tropical 
species are not included in Fig. 6b,c because their low volatility values 
fall below the range where period and synchrony become meaningful 
(Methods).

Taken over all ecoregion–species combinations, volatile seed pro-
duction is most common for species with short periods between produc-
tive years (correlation = −0.28, 95% CI = (−0.36, −0.21), Extended Data 
Fig. 2). This negative relationship between volatility and period holds 
within phylogenetic groups, where there are more negative than posi-
tive correlations between volatility and period (Extended Data Fig. 2).  
High volatility aligns with short periods in most temperate groups 
(Abies, Quercus, Fagus, residual Fagaceae, Pinaceae and Magnoliaceae), 
some tropical species (Meliaceae, Melastomataceae) and some with 
mixed tropical/temperate affinities (residual Sapindaceae). Correla-
tions in other large temperate groups (Pinus, Acer, Cupressaceae, 
Betulaceae and Oleaceae), as well as in mixed tropical/temperate 
groups (Annonaceae, Araliaceae, Moraceae, Symplocaceae and Lau-
raceae) are negative but not significantly less than zero. Conversely, 
positive relationships are dominated by one mostly temperate group  
(Aquifoliaceae), others being non-significant but predominantly tropical.

Across species, the relationship between volatility and synchronic-
ity is weak (correlation = −0.039, 95% CI = (−0.12, 0.043)), but strong 
correlations emerge within many phylogenetic groups (Extended 
Data Fig. 3). Volatile species have low synchronicity in many families  
of mixed temperate/tropical affinity (blue in Extended Data Fig. 3). 
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Results are summarized in Fig. 2b to compare with the hypotheses.
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High volatility combines with high synchronicity in the temperate 
genera Fagus and Abies, but only weakly in Quercus (brown in Extended 
Data Fig. 3). For the majority of species groups, high synchronicity is 
associated with low volatility.

Discussion
Seed and pollen dispersal syndromes emerge as the dominant trait 
associated with volatile seed production in trees; reliance on mutu-
alist pollen and seed dispersal is among the strongest predictors of 
masting avoidance (Fig. 3a). The selective forces that have shaped 
associations between masting and animal dispersal include costs to 
mutualist dispersers and the benefits of reduced predation2,4,14. These 
selective forces are further complicated by the fact that at least some 
animal dispersers are also seed predators (for example, in Quercus 
and other species that are dispersed by scatter-hoarding vertebrates). 
While animal-dispersed species are overall less volatile (Fig. 3a), there  
are notable exceptions. For example, the volatile Fagaceae (Fig. 6a)  
have primarily wind-dispersed pollen but depend on scatter-hoarding 
seed dispersers–mutualists that suffer in low-yield years and disperse 
and satiate in high-yield years59,60. Perhaps as an exception that sup-
ports the rule, within Fagaceae the lowest volatility is estimated  
for Castanea with primarily insect-dispersed pollen61. The strong  
connection between mast volatility and wind dispersal (Fig. 3a) sup-
ports the hypothesis that animal pollination may suffer from volatile 
masting2,4,6,23,62.

Insights from this study could not have come from a traditional treat-
ment of variation. Traditional comparisons based on the coefficient of 
variation and its derivatives omit the basic attribute of frequency (Fig. 1).  
Extracting mean intervals between events becomes highly subjective 
because there is no threshold value that distinguishes an event from 

background (Fig. 1c). All three components of mast variation require 
individual-scale data. Analysis of raw data, with dependence between 
individuals and over time, allowed quantification of the contributions 
of volatility, quasi-periodicity and quasi-synchronicity.

Volatile species have low reliance on animal dispersal, low nutrient 
demands and generally low sensitivity to climate anomalies (Fig. 5a,b). 
The classic masting response—volatile, synchronized reproduction at 
lagged intervals—is associated with species traits and conditions that 
lead to low seed production. Cold, dry climates at high latitudes, where 
reproductive output is two orders of magnitude lower than in the wet 
tropics63, are dominated by small seeds, wind-dispersed pollen and 
seeds, and volatile reproduction (Fig. 3a). Synchronized reproduction 
at long periods is a feature of dry climates (Fig. 3b,c) where pollina-
tion efficiency is expected to be high45. Even the increased volatility 
with soil fertility fits this negative relationship between fecundity and 
volatility: mean fecundity declines with foliar P58 as volatility increases  
(soil CEC in Fig. 3a). Despite the limitations of comparing environ-
mental responses across species that differ in their distribution of 
exposures to the environment, results are not consistent with the 
expectation that volatility at the species level increases with higher 
variations in climate anomalies34.

Synchronicity has the tendency to be associated with wind dis-
persal (Fig. 3c), consistent with costs to mutualist dispersers that 
include not only satiated frugivores, but also competition for animal 
pollinators64. Synchronized flowering may increase pollinator visita-
tion rates65,66; however, if unreliable flowering limits specialized pollen 
dispersers, then benefits of synchronicity could be mixed (Fig. 3c).  
A tendency for long intervals between mast years in mast-avoiding  
tree species has a muted effect on their animal seed dispersers because 
it is associated with low volatility and asynchronicity (Fig. 3b,c).  
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The association of wind pollination with high volatility but not with long 
periods agrees with the largely untested notion that quasi-synchronous 
flowering effort increases pollination efficiency while long intervals 
between mast years have no additional benefits1.

The synchronicity that is typically emphasized for masting popula-
tions belies the overall weak tree-to-tree correlation. The distribution 
of inter-tree correlations weighted by fecundity (Fig. 4b) could resolve 
the paradox of low synchronicity in species traditionally identified 
as iconic mast producers15–17. Low and even negative correlations  
characterize populations as a whole (Fig. 4a), but strong producers are 
dominated by positive correlations (Fig. 4b). The production of some 
non-synchronized offspring is an expected bet-hedging maternal 
strategy even where quasi-synchronicity is generally beneficial. The 
advantages of predator satiation must balance the potential costs of 
concentrated intraspecific competition between sibling seedlings and 
of satiating mutualist pollinators and dispersers. Indeed, heterogene-
ous volatility–synchronicity relationships between lineages (Extended 
Data Fig. 2) suggest the potential for region/species-scale adaptation 
in response to variable predation pressure22,67.

The finding that volatile species tend to have short periods (Fig. 6),  
including within multiple phylogenetic groups (Extended Data Fig. 2),  
is not consistent with the view that resource depletion followed by 
delayed replenishment is a dominant source of variation between spe-
cies. This lack of association ‘between’ species does not preclude a need 
for extended replenishment following high yields ‘within individuals’ 
in ways that differ between species. Although less studied, it is also 
important to understand how local adaptation (that is, genetic differ-
ences among populations68) and gene × environment interactions that 
affect seed enemies and dispersers5,69 may contribute to the evolution 
of volatility, periodicity and synchronicity.

If consistently high nutrient concentrations obviate the need for 
prolonged nutrient recovery, then we expect the observed negative 
association between foliar nutrients and volatility (Fig. 3a). By allowing 
for the effects of both foliar nutrient concentrations and site fertility, 
our results diverge from previous studies suggesting low volatility on 
fertile sites. However, comparisons must consider that previous studies 
include few species24–26. The effects of nutrient demand versus supply 
can be confounded by the fact that nutrient-demanding species are 
most abundant on fertile sites. By including differences in foliar nutri-
ents as a species-level trait with the CEC where trees occur, this global 
analysis finds that low volatility is associated with nutrient-demanding 
species, not low-fertility sites. The association of high volatility and 
short periods with nutrient-rich habitats (CEC in Fig. 3) could result 
from accelerated nutrient replenishment on fertile soils. However, 
as noted above, volatile species are not those with short periods in 
general. Not only do nutrient-demanding species (as reflected in foliar 
nutrient content) have lower species seed production (SSP, defined 
as seed number × seed size)58, but they are also less volatile (Fig. 3a). 
Limited effects of resources on synchronicity can be related to the 
weak effects of soil CEC on seed production58 and intense competition 
on nutrient-rich sites42.

The expectation that large seeds might demand long recovery 
intervals was not supported by comparisons between species. Using 
data published previously70, Sork et al.30 found a positive relationship 
between acorn size and mast period for 18 temperate Quercus species. 
We find a negative relationship at the global scale: species with large 
seeds are less volatile and have short periods in Fig. 3a,b. In the limited 
dataset70, the negative correlation is driven by a longer interval for  
Q. alba than for Q. falcata. In general, we find that red oaks (Q. falcata,  
Q. rubra, Q. velutina and Q. coccinea) have longer periods than white oaks  
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Fig. 6 | Phylogenetic coherence in the three masting components. a, Volatility 
(on log scale) has a phylogeny component (Pagel’s λ = 0.83, P < 10−9, n = 394). 
 b, Quasi-periodicity (left) exhibits a weaker phylogenetic coherence compared 
with volatility (Pagel’s λ = 0.52, P = 0.0023, n = 142). Quasi-synchronicity (right) 

shows the weakest signal (Pagel’s λ = 0.21, P = 0.0064, n = 142). Species with 
volatility of at least 0.94 (62.5% quantile) are shown in b because periodicity 
becomes noisy and less meaningful at low levels of volatility.
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(Q. alba, Q. montana, Q. pubescens, Q. robur, Q. stellata and Q. serrata), 
Cerris oaks (Q. cerris, Q. ilex and Q. suber) and Fagus (Fig. 6b), perhaps 
related to the 2 yr development time for red oak seeds.

The wide variation in seed production57,58 emphasizes the impor-
tance of large data sets to estimate effects, represented here by 12  
million tree-years at a global scale. As is common in observational stud-
ies, the geographic coverage of raw observations is not uniform across 
different regions (Extended Data Fig. 1). Expanding the MASTIF network 
with additional sites in South America and Africa would contribute to 
a more balanced global coverage.

The negative association between masting intensity and fecundity 
suggests the view of masting as desperation: an evolutionary option 
most common in species and settings where seed production is lim-
ited primarily by climate and habitat, and where animal dispersal is 
less common. There is no question that predator satiation occurs and 
seedling escape can result71–73. Although it is not uncommon for a given 
tree species to have multiple pollinators and seed dispersers74, the diet 
breadth of seed consumers (for example, specialist and generalist) 
clearly affects masting9. Quantifying different degrees of specialization 
between seed predators, pollinators and dispersers is an important 
future research avenue. Still, at the global scale, species differences in 
masting depend on their reliance on animal dispersers.

The emergence of dispersal syndrome as a dominant link to species  
differences in masting intensity (Fig. 3) supports the view that mutual-
ist relationships could be just as important as predator satiation—the 
cold, dry settings where masting is intense coincides with low reliance 
on mutualist dispersers. The conundrum faced by species that depend 
on animal dispersal while also suffering from seed predation makes for 
conflicting selection pressures that are evident when viewed across the 
diversity of tree species.

Methods
MASTIF summary
The MASTIF model allowed us to jointly model individual trees, with 
their dependence on one another and over time. This hierarchical, 
state–space model and the Gibbs sampling used for posterior simula-
tion are detailed in ref. 9, with only key elements that relate to mast 
syndromes summarized here. Model fitting included approximately  
12 million tree-years from 898 species (Extended Data Fig. 1). The  
MASTIF model is open-access in the R package MASTIF on CRAN.

The core quantity of interest is the tree-year fecundity fijr,t for tree 
i on stand j, in ecoregion–species r and year t. Fecundity varies indi-
vidually with tree size75 and crowding, locally with interannual climate 
anomalies, geographically with climate norms, soil and drainage and 
regionally through shared year effects. The shared variation between 
trees in year effects are random between ecoregion–species combi-
nations, allowing for covariation that is broader than local climate  
but still regionally variable. Because the model includes interannual 
anomalies at the local scale, year effects quantify shared variation 
beyond that explained by climate anomalies and at a coarse (ecore-
gion) scale.

The MASTIF model incorporates two data types including  
crop counts and seed traps. Crop counts cijr,t are conditionally 
beta-binomial, which allows for uncertainty in the fraction of the crop 
that is observed,

betaBinom(cijr,t| fijr,t,aijr,t,bijr,t)

= ∫
1

0
binom(cijr,t| fijr,t,qijr,t)beta(qijr,t|aijr,t,bijr,t)dqijr,t

(1)

where qijr,t is an estimate of the fraction of the crop observed, aijr,t and bijr,t 
are parameters selected that have mean fraction qijr,t (that is, the frac-
tion reported), but error that increases with small qijr,t. This approach 
allows for the fact that the lower the reported crop fraction, the less 
certain it is.

Seed trap counts are conditionally Poisson,

Poi (yjr,t|Aj,tSfjr,t) (2)

where trap area Aj,t can vary by study and year t, yjr,t is a vector of seed 
counts for Sj traps, S is the Sj × nj kernel matrix that determines dispersal 
from each of i = 1, …, nj trees to Sj traps, depending tree-to-trap dis-
tances and fjr,t is the length-nj vector of tree fecundities. The dispersal 
kernel follows that of ref. 76.

Fecundity is the product of latent states for maturation status 
and conditional fecundity, fijr,t = ψij,tρijr,t having the joint distribution 
[ψijr,t, ρijr,t] = [ψijr,t∣ρijr,t][ρijr,t]. (We use bracket notation [x] to indicate a 
distribution or density of x). Maturation is a one-way process, modelled 
as a probit hidden Markov model. The maturation status ρijr,t ∈ (0, 1) 
is known to be 1 (that is, mature) for trees that have been observed to 
produce seed in the past (that is, [ρijr,t = 1∣ρij,t−1 = 1] = 1) and 0 if known to 
be immature subsequently (that is, [ρijr,t = 1∣ρij,t+1 = 0] = 0). For tree-years 
of unobserved maturation status, the probability of being mature in 
year t, given past and future status is the probit,

ρijr,t|ρijr,t−1,ρijr,t+1 ∼ Bernoulli(pijr,t)

pijr,t = ρijr,t−1 + (1 − ρijr,t−1)ρijr,t+1Φ(v′ijr,tβββ
v)

(3)

where Φ( ⋅ ) is the standard cumulative normal distribution, vijr,t are 
predictors and βv are fitted coefficients. All unknown statuses must be 
imputed, so that ρ coefficients in equation (3) are the currently imputed 
values in Gibbs sampling.

The process model for fecundity is log-normal and dynamic,

logψijr,t|ρijt,t ∼ N (x′ij,t−1βββ + αij + γr,t,σ2) I(ψijt,t ≤ 1)1−ρijr,t I(ψijt,t > 1)ρijr,t (4)

where xij,t are predictors in the model with coefficients β, αij is  
the random effect for tree ij, γr,t is the year effect for ecoregion– 
species r, and σ2 is the residual variance. The factors containing  
the indicator function (I) specify that mature individuals have  
latent conditional fecundity sufficient to generate at least one  
seed. Importantly, the approach allows for observed zero fecundity  
for both seed traps and crop counts while latent fecundity  
remains finite. This approach follows the approach used in Tobit  
models for discrete zeros in otherwise continuous data77,78. Predic-
tors in the design vector xijr,t include known climate and habitat  
variables combined with variable selection by Deviance Information 
Criterion (DIC).

Masting syndromes
The analysis of masting components at individual level is based on the 
estimate of the fecundity, fijr,t, on the log (proportionate) scale. The 
mast syndrome consists of three elements M = (Mv, Mp, Mc), the volatility 
Mv having units of variance in log f , period Mp in years and the dimen-
sionless synchronicity Mc. The first two elements emerge from the 
spectral density Sf(ω), evaluated in the frequency ω domain. Techni-
cally, Sf(ω) is obtained by transforming the auto-covariance function 
C(t) from the time domain to the frequency domain or, alternatively, 
by taking the Fourier transform of the autocorrelation function 
C(t)/C(0). There is an associated spectral ‘variance’, obtained by inte-
grating the spectral density over frequency

Varω( f ) =
1
π

ω∗

∑
k=0

Sf (ωk) (5)

where ω* is the last frequency term. Period (years) is the reciprocal 
of frequency, ω−1. To capture the defining feature of masting, that of 
variance concentrated at low frequency, we define ‘volatility’ as the 
period-weighted spectral variance,
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Eω(Mv) =
1
πT

T−1
∑
k=0

ω−1
k Sf (ωk) (6)

where T is the number of terms included in the summation. The sub-
scripts of tree i, stand j and ecoregion–species r are omitted to reduce 
clutter. Because short time series could be dominated by noise, we 
focused on mature individuals that include at least 10 yr of observations 
(139,785 trees and 2,841,238 tree-years from 468 species). Detailed data 
distribution can be found in the Supplementary Data. We set T to be 
half of the threshold, that is, T = 5 yr. Likewise, ‘periodicity’ emphasizes 
variance at low frequency,

Eω(Mp) =
1

πVarω[ f ]

T−1
∑
k=0

ω−1
k Sf (ωk) (7)

with variance

Varω(Mp) =
1

πVarω( f )

T−1
∑
k=0

ω−2
k Sf (ωk) − E2ω(Mp) (8)

The span of variance captures the quasi-periodic nature of masting, 
being broad where period is unpredictable (Fig. 1d). The notation Ex 
indicates the expectation of the variable x. We obtained the spectral 
density Sf (ωk) for each tree (log fijr) using the R package ‘spectrum’. 
Volatility and periodicity complement currently used metrics for mast-
ing. Volatility measures variance in the frequency domain, capturing 
the out-sized importance of variation at the multiyear scale, moving 
beyond lag-0 (CV) or lag-1 approaches. Periodicity side-steps the need 
to define a threshold productivity for mast years or the fact that a 
simple mean interval may not represent quasi-periodic variation.

The ecoregion–species masting syndromes, Mr = (Mv,r, Mp,r, Mc,r), 
are the expectations of individual-level estimates Mijr. Because indi-
vidual volatility Mv,ijr and quasi-periodicity Mp,ijr could be dominated 
by large numbers of small and thus low-fecundity trees, we evaluated 
the Mv,r and Mp,r in a weighted way to increase signal-to-noise ratio and 
to emphasize the large seed producers:

Mv,r =
∑ijISPijMv,ijr

∑ijISPij
(9)

Mp,r =
∑ijISPijMp,ijr

∑ijISPij
(10)

where ISP is individual standardized productivity58,63. It is defined as 
seeds per tree times mass per seed divided by tree basal area and aver-
aged across multiple years.

We evaluated the weighted synchronicity at ecoregion–species 
level following a similar procedure as that for volatility and periodic-
ity. Tree-to-tree correlation coefficients were calculated between all 
conspecific individuals within 1 km of one another. We included cor-
relations Mc,k over years for which both trees of a pair k are estimated 
to be in the mature state (3,539,315 tree-years and 274,024 trees from 
468 species). For the tree-to-tree correlations, both the correlation and 
the product of fecundity were calculated for each pair, the latter having 
large values for trees with high production. A weighted synchronicity 
over all trees of a species within 1 km was evaluated as

Mc,r =
∑kMc,krCk

∑kCk
(11)

for all pairwise correlations Mc,kr at ecoregion–species r, with weight Ck 
being the absolute value of the pairwise covariance, that is, the product 
of fecundities for each pair of trees k.

Analyses at ecoregion–species level
We evaluated variations in Mr = (Mv,r, Mp,r, Mc,r) jointly at ecoregion–spe-
cies level (n = 583) by incorporating phylogeny, species traits, soil and 
climate covariates in a generalized joint attribute model (GJAM). Our 
analyses were implemented at ecoregion–species level because 15% 
of the total species (n = 468) have within-species variations across 
ecoregions (Supplementary Data). The remaining (85%) species that 
were sampled at one ecoregion are primarily tropical species. As of 
now, MASTIF coverage could be improved with the addition of more 
sites in South America, Africa and Asia. One of the masting families, 
Dipterocarpaceae, is not included in the network. However, the MASTIF 
network is continuously expanding to achieve a more balanced global 
coverage. Ecoregions in this study follow the same definition as World 
Wildlife Fund (WWF) terrestrial ecoregions79.

Phylogeny. We quantified the phylogenetic signal in volatility and 
quasi-periodicity using Pagel’s λ. Species differences in masting syn-
dromes were averaged across ecoregion–species combinations. Phy-
logeny was obtained for 394 species (84% of the total 468 species) 
from ref. 80. We used the continuous character mapping method from 
the R package ‘phytools’81 to visualize the phylogenetic coherence in 
volatility, periodicity, and synchronicity.

To account for phylogeny in the joint model of the three masting 
syndromes, we departed from traditional assumptions concerning 
residual covariance, turning instead to direct inference on the effects 
of phylogenetic groups. The aim to control for phylogenetic associa-
tion in comparative studies82,83 suggests a capacity to take up variation 
that might be linked to relatedness in a general sense. Instead, current 
methods impose a highly specific assumption that residual variance 
between species traits results from a random walk that proceeds at a 
fixed rate across species pairs. However, natural selection would not 
operate in this way, not for a given species pair and certainly not across 
a large number of species. Residual variance constitutes all sources of 
variation that are not taken up by the mean structure of the model. Just 
as there could be massive phylogenetically constrained traits between 
specific species pairs that have diverged under differing intensities of 
selection, there could be minimally constrained pairs within the same 
comparative study where others are strong. The important modelling 
concern for valid inference on coefficients is a covariance matrix that 
can take up relationships that remain after accounting for the mean, 
regardless of their source and without imposing specific assumptions 
about rates of divergence.

Our joint analyses of masting syndromes explored phylogenetic 
contributions, with species groups treated as random effects and 
covariance that is unconstrained by assumptions on divergence rates. 
Rather than assume a fixed relationship between residual covariances, 
our approach provides a transparent estimate for differences between 
species groups, allowing that they need not be anchored to pairwise 
divergence times. For genera having at least 10 species in the MASTIF 
data, species were grouped at the genus level. All remaining species 
in families having at least 5 species were grouped at the family level. 
Remaining species were aggregated into an ‘other’ group for purposes 
of model fitting, but they are displayed separately in the correlation 
plots (for example, Extended Data Fig. 3). Relationships between mast-
ing syndromes within each phylogenetic group were evaluated using 
Pearson’s correlation coefficient.

Joint modelling of masting syndromes. To evaluate masting as a 
syndrome and the variables associated with it, we conducted joint 
analyses of mast attributes against predictors that include species 
traits, environment and phylogeny. Species traits included disper-
sal mode (anemochory vs zoochory), pollination mode (animal vs 
wind-pollinated syndromes), mean foliar N and P (percentage of dry 
mass) and seed size (g per seed). Traits information were obtained from 
collections in our labs and supplemented with the TRY database84. 
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Genus or family-level means were used where seed size and foliar nutri-
ents were missing at the species level. Similarly, genus or family-level 
modes were used for dispersal and pollination syndromes. Foliar N:P 
was calculated as the ratio between the two nutrients. Foliar N:P meas-
ures the nutrient limitations33 and could affect the masting syndrome29. 
Environmental covariates included soil fertility (CEC), mean annual 
temperature (ranging from cold to warm) and accumulated annual 
moisture deficit (differences between potential evapotranspiration 
and precipitation, ranging from wet to dry) averaged at ecoregion–spe-
cies level. We used GJAM78 to allow for the dependence between mast 
components and the fact that masting components are non-negative 
(they are non-Gaussian),

wr ∼ MVN(x′rβββ,Σ) ×
S
∏
l=1

I(wr,l ≤ 0)I(Mr,l=0)I(wr,l > 0)I(Mr,l=wr,l) (12)

where wr is the length-S vector holding the latent (and uncensored)  
mast response for ecoregion–species r and Mr is the length-S observation 
vector (S = 3 for the three components). Covariates occupy the  
length-Q vector x′r, including species traits and environmental condi-
tions. Responses to covariates are included in the Q × S matrix of  
coefficients β. The latent variable has the mean vector x′rβββ  and  
S × S covariance matrix Σ. The product including indicator functions  
I( ⋅ ) allows for negative values on the latent scale, essentially a multi-
variate Tobit78.

Model fitting with GJAM included phylogeny as random groups 
(previous section). Variable selection was done using DIC as the  
criterion for additional predictors in the model. Volatility (response) 
and seed mass (covariates) were modelled on the log (proportion-
ate) scale. Dispersal and pollination modes were included as factors. 
Standardized coefficients β were summarized using the posterior 
median, 90% and 95% credible intervals from the Markov chain Monte 
Carlo (MCMC) chains. GJAM fitting is open-access in the R package 
GJAM on CRAN.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
Seed production data are available at the Duke Data Repository https://
doi.org/10.7924/r4348ph5t. Species traits are downloaded from TRY 
Plant Trait database at https://www.try-db.org/TryWeb/Home.php. 
Cation exchange capacity data were obtained at https://soilgrids.
org/. Climate data were extracted from Terraclimate at http://www.
climatologylab.org/ and CHELSA at https://chelsa-climate.org/.

Code availability
R statistical software v.4.0.2 was used in this work. All analyses used 
published R packages, with details stated in Methods. MASTIF includes 
code in R and C++, which is published on CRAN at https://cran.r-project.
org/web/packages/mastif/index.html.
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Extended Data Fig. 1 | MASTIF sites. The summary of MASTIF sites with symbol size proportional to observations. Detailed data distribution is in the supplementary 
csv file.

http://www.nature.com/natureplants


Nature Plants

Article https://doi.org/10.1038/s41477-023-01446-5

Extended Data Fig. 2 | Correlations between volatility and quasi-periodicity. 
Correlations between volatility and quasi-periodicity at ecoregion/species level 
within phylogenetic groups (see methods). Top-left labels include Pearson’s 
correlation coefficients (two-sided test), including those that are significant  
(~, *, **, and ***) indicate 0.1, 0.05, 0.01, and 0.001 significant level, respectively. 

Shading represents positive (brown) and negative (teal) correlations. Colors of 
the points indicate different genera within each phylogenetic group. Across all 
ecoregion/species level observations, volatility is negatively correlated with 
quasi-periodicity (-0.28, 95% CI = (-0.36,-0.21)).
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Extended Data Fig. 3 | Correlations between volatility and synchronicity. 
Correlations between volatility and synchronicity at the ecoregion-species level 
within phylogenetic groups (see Methods). Symbology follows the extended data 
fig. 2. Volatility is negatively associated with synchronicity for animal pollinated 

(AP) species (-0.17, 95% CI = (-0.06,-0.26)) while positively associated with 
synchronicity for wind pollinated (WP) species (0.26, 95% CI = (0.13,0.39)).  
Blue lines in AP and WP panels indicate linear regression.
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