Supplemental Information for:

Biotic and abiotic drivers of plant-pollinator community assembly across wildfire gradients

Joseph A. LaManna^{1,2}*, Laura A. Burkle³, R. Travis Belote⁴, and Jonathan A. Myers⁵

¹Department of Biological Sciences, Marquette University, PO Box 1881, Milwaukee,

Wisconsin 53201 USA, joseph.lamanna@marquette.edu * Corresponding author

² Departments of Botany & Zoology, Milwaukee Public Museum, Milwaukee, Wisconsin 53233

USA

³ Department of Ecology, Montana State University, Bozeman, Montana 59717 USA,

laura.burkle@montana.edu

⁴ The Wilderness Society, Bozeman, Montana 59717 USA, <u>tbelote@tws.org</u>

⁵ Department of Biology & Tyson Research Center, Washington University in St. Louis, St.

Louis, Missouri 63130 USA, jamyers@wustl.edu

Supplemental Methods

Study site

Our study took place in three sites (named Helena, Paradise, and Whitefish) within the Northern Rocky Mountains, which encompasses the Crown of the Continent and the Greater Yellowstone Ecosystem in western Montana, USA (Fig. 1; Burkle, Myers, & Belote, 2015). Historically, this region has experienced mixed-severity fire regimes (Baker, 2009; Fischer & Bradley, 1987), which favor understory and early successional plant species and a mosaic of forest successional stages (Hessburg & Agee, 2003; Perry et al., 2011). Wildfires have largely been suppressed over the past century, however, leading to denser stands and more intense and extensive wildfires in the past few decades (e.g. Miller, Safford, Crimmins, & Thode, 2009). The Helena site is characterized by low primary productivity, Paradise by intermediate productivity, and Whitefish by high productivity (Burkle et al., 2015). These three site include a variety of forested ecosystems, including ponderosa-pine dominated forests and woodlands in Helena, lodgepolepine and Douglas-fir forests in Paradise, and western-larch, lodgepole-pine and mixed-conifer forests in Whitefish (Burkle et al., 2015). Within each site, 52-54 plots were selected that differed in the recent presence and severity of wildfire (Fig. 1), including 16-18 plots with no recent wildfire (within at least the past 60 years), 18 plots with recent (< 10 years old) mixedseverity wildfire, and 18 plots with recent high-severity wildfire (Burkle et al., 2015). Within each wildfire disturbance level in each site, plots were in one of two previous wildfire burn units or unburned units. In general, woody plants were recovering slowly, if at all, from high-severity fire in Helena and Paradise, while young trees (mostly lodgepole pine regeneration) dominated high-severity burned areas in Whitefish, indicating that the rate of forest succession and the influence of the woody overstory strata varies among these sites (Burkle et al., 2015). **Data collection**

Flowering-plant community sampling – Throughout the 2014 and 2015 growing seasons, we visited each plot once per week. During each visit, we quantified floral densities, species richness, and composition by recording the number of open flowers of each species along a 25×2 m band transect (Fig. 1). Although there were additional plant species present at these plots (see Burkle et al., 2015 for a description of forb, grass, and tree diversity in the study sites), we focused on herbaceous and woody plant species in bloom as they represent floral resources for pollinators. Importantly, all open flowers were surveyed (i.e. not only those flowers where pollinators were present).

Pollinator community sampling – During each floral-transect visit, we also quantified the densities, species richness, and composition of pollinators by hand-netting within a 25 m diameter circular plot centered on the 25×2 m floral transect (Fig. 1b) for 20 minutes during sunny, calm weather and peak pollinator activity (ca. 0900 - 1630). Plots were visited in random order during these hours. We considered pollinators to be any insect visitor that was observed flying among flowers and contacting floral reproductive parts. Plots in Helena were observed 12 times in 2014 and 9 times in 2015. Plots in Paradise were observed 9 times each in 2014 and 2015. Plots in Whitefish were observed 7 times each in 2014 and 2015. Total observation time varied per plot depending mainly on growing season length, which varied among sites. Each pollinator was collected individually and identified to species later. Bees (Hymenoptera), flies (Diptera) and butterflies (Lepidoptera) were all sampled during our surveys and are included in our analyses. However, most of the pollinators sampled were Hymenoptera (Burkle, Simanonok, Durney, Myers, & Belote, 2019; Reese, Burkle, Delphia, & Griswold, 2018), and results were

similar if we conducted all analyses using only Hymenoptera.

Abiotic environmental factors - We measured several abiotic environmental variables at each plot that are thought to influence pollinator and plant community composition, including wildfire disturbance severity, climate, soil chemistry, topography, and other variables associated with wildfires and pollinator nesting habitat. For each transect, we quantified the severity of recent wildfires with a wildfire severity index (dNBR) determined by remotely-sensed data (Eidenshink et al., 2007). We also obtained values of net primary productivity (NPP; Zhao, Heinsch, Nemani, & Running, 2005) and 19 climatic variables (BIOCLIM) with remotely-sensed satellite data (Wang, Hamann, Spittlehouse, & Carroll, 2016). We determined elevation, slope, and northern and eastern aspect at each plot, which we calculated based on a 30-m digital elevation model. We collected soil samples from each plot and measured the following soilchemistry variables: pH, neutralizable acidity, percent organic material, available P, Ca, Mg, K, cation exchange capacity, percent sand, silt and clay. Finally, changes in coarse-woody debris (CWD), bare ground, stumps, and other legacies that can result from wildfires can influence plant and pollinator diversity and species composition (Harmon, 1996; Mateos, Santos, & Pujade-Villar, 2011; Moretti, De Bello, Roberts, & Potts, 2009; Tinker & Knight, 2000; Vázquez, Alvarez, Debandi, Aranibar, & Villagra, 2011; Williams et al., 2010). Thus, we measured the following variables to quantify other changes in the abiotic environment associated with wildfires and pollinator nesting habitat: number of stumps and percent ground cover represented by bare ground, leaf litter, and CWD (Grundel et al., 2010; Hopwood, 2008; Potts et al., 2005).

Statistical analyses

We calculated β -diversity among plots within each wildfire-severity level (i.e. high-severity, mixed-severity, and unburned) using mean distance-to-centroids calculated from Bray-Curtis distance that measure differences in species composition and relative abundances of species across plots (Anderson et al., 2011). The distances to the centroid of each wildfire-severity level in each site were calculated with function 'betadisp' in the R 'vegan' package (Oksanen et al., 2019; R Core Team, 2015). We then performed null-model analyses to disentangle potential wildfire effects on β-diversity via alteration of species pools and local abundance from wildfire effects on β-diversity via non-random effects on local species composition of plants and pollinators (Kraft et al., 2011; Myers et al., 2013). Individual pollinators or flowers from each wildfire severity level in each site were randomly re-distributed among plots in that wildfire severity level in that site while preserving local abundance (i.e. the total number of pollinators or flowers in each plot) and species-abundance distributions in each site × wildfire combination (Kraft et al., 2011; Myers et al., 2013). Thus, these null assemblages were the product of stochastic assembly from the observed species pool and local abundance alone, and all localscale mechanisms that might cause additional spatial aggregation of pollinators or flowers (e.g., habitat partitioning, local interactions among species, dispersal limitation) were removed. Distance-to-centroids for simulated communities (β_{SIM}) were then compared to observed distance-to-centroid (β_{OBS}) relative to the standard deviation of β_{SIM} (σ_{SIM}) after 2,000 iterations, and a standardized effect size of the difference was calculated as: $\beta_{SES} = (\beta_{OBS} - \beta_{SIM}) / \sigma_{SIM}$. Therefore, β_{SES} represent β -diversity that remains unexplained by stochastic assembly from the species pool determined by site and wildfire-severity level (Kraft et al. 2011), and are a way to measure the influence of wildfire at the local plot-to-plot scale (as opposed to wildfire effects on the species pool itself). We tested for differences in β -diversity among wildfire-severity levels using generalized linear mixed models (GLMMs) with distance-to-centroid as the response that

included site and unit nested within site as random effects. The unit of replication in these GLMMs was the distance of each plot to its wildfire-severity-level centroid in a study site (i.e. one data point per plot per wildfire-severity level per site). These distances are calculated from Bray-Curtis dissimilarities using function 'betadisper' from R package 'vegan' and are directly comparable across different sites and wildfire-severity levels (Anderson et al., 2011; Oksanen et al., 2019). We report results from both a parametric and nonparametric statistical model. For the parametric model, we used GLMMs that allowed residual variance to differ among wildfireseverity levels using function 'lme' from R package 'nlme.' For the non-parametric model, we used permutational GLMMs using function 'permanova.lmer' from R package 'predictmeans' (Luo, Ganesh, & Koolaard, 2020; Pinheiro, Bates, DebRoy, & Sarkar, 2020). Briefly, nonparametric permutational GLMMs randomly re-assign data points in a mixed-model ANOVA to different groups in each iteration (we used 9,999 iterations) and compare a distribution of nullexpected F values to the observed F value. We summed pollinator and floral abundances at each plot across both years for analyses presented here. Results were qualitatively similar if we analyzed 2014 and 2015 separately except β-diversity for pollinators differed among wildfireseverity levels in 2014 and 2014-2015 combined, but not in 2015 when considered separately. However, three times as many pollinators were sampled in 2014 compared to 2015, so inferences were made with the larger dataset of 2014 and 2015 combined, and these results matched results considering only 2014.

To assess effects of wildfire on floral and pollinator species richness and total abundance at the fire-unit scale, we compared total abundances and rarefied species richness (rarefied to the minimum number of individuals across burn units after first rarefying to the minimum number of plots in each wildfire × site × unit combination) for each unit among the three wildfire-severity levels. We calculated fire-unit abundance as the total number of pollinators or flowers of all species combined across plots in a burn or unburned unit. We then tested for difference in mean fire-unit abundances and mean rarefied species richness across wildfire-severity levels with GLMMs that included site as a random effect. At the plot (local) scale, we tested for differences in local total abundance (total count of flowers or pollinators at each plot), local species richness, and local rarefied species richness among wildfire severity levels with GLMMs that included site and unit nested within site as random effects. For rarefication analyses, species richness was rarefied to the minimum number of individuals across burn units or plots. The only exception to this was for local pollinator species richness, where species richness was rarefied to the 15th percentile of total abundances across sites, because only one pollinator was detected at seven plots. However, results are similar and inferences the same if we exclude these seven plots. Six of the seven plots where only one pollinator was detected were in unburned landscapes, where pollinator abundances were much lower than in burned landscapes. Moreover, plots with only one pollinator were surveyed with equal effort as plots with many more pollinators. Therefore, we retained plots with only one pollinator because they reflect biologically-meaningful differences in pollinator abundances across wildfire-severity levels. For all analyses, we report both GLMMs that allowed residual variance to differ among wildfire-severity levels using function 'lme' from R package 'nlme' and non-parametric permutational GLMMs using function 'permanova.lmer' from R package 'predictmeans' (Luo et al., 2020; Pinheiro et al., 2020). We summed pollinator and floral abundances at each plot across both years for analyses presented here, but results were qualitatively similar if we analyzed 2014 and 2015 separately. We also visualized these patterns using nonmetric multidimensional scaling (NMDS) in program R (Oksanen et al., 2019; R Core Team, 2015).

We used variation partitioning at two scales to determine the relative importance of various ecological factors to differences in species composition among plots within each wildfire-severity level and among plots across wildfire-severity levels. This allowed us to evaluate: 1) the relative importance of species sorting along abiotic and biotic gradients within each wildfire-severity level; and 2) the relative importance of wildfire severity and biotic interactions to differences in species composition across wildfire-severity levels. Factors examined in these analyses included plant-pollinator associations (i.e. the extent to which variation in floral species composition predicts pollinator species composition, and vice versa), wildfire severity, other abiotic factors (i.e. climate, topography, and other variables associated with wildfires and pollinator nesting habitat), and spatial variables associated with dispersal limitation (geographic distance) and unmeasured environmental variables (Peres-Neto, Legendre, Dray, & Borcard, 2006). We used the 'varpart' and 'rda' functions in the R 'vegan' package (Oksanen et al., 2019; R Core Team, 2015). Prior to conducting variation partitioning analyses, we first performed a parallel analysis for our abiotic environmental data using function 'paran' of R package 'paran' (Dinno, 2018), which tests how many principal components (PCs) are different from random variation. This parallel analysis indicated retaining the first four abiotic principal components. For biotic variables, we performed a principal coordinate analysis (PCoA) on the floral and pollinator Bray-Curtis dissimilarity values (pollinator and flowering-plant βdiversity) using the 'cmdscale' function from the 'vegan' R package to compute orthogonal scores that described correlated differences in floral and pollinator species composition among plots within each study site (Borcard, Gillet, & Legendre, 2011). We used all of these floral and pollinator PCoA scores as the response matrix for floral and pollinator variation partitioning analyses respectively—this analysis is also known as a distance-based redundancy analysis (dbRDA; Borcard et al., 2011; Legendre & Legendre, 2012).

Prior to conducting variation partitioning analyses, we used forward model-selection ('forward.sel' function in the 'adespatial' R package) to reduce the number of variables used to predict variation in floral and pollinator species composition (Borcard et al., 2011; Legendre & Legendre, 2012). Forward-model selection is a standard approach recommended for variation partitioning that first tests for the overall significance of a predictor matrix and, if significant, assesses the significance of each column of the matrix to evaluate its contribution in light of other columns (Borcard et al., 2011; Legendre & Legendre, 2012). Only significant columns are retained up to the adjusted-R² of the overall predictor matrix (Borcard et al., 2011; Legendre & Legendre, 2012). We used this forward-selection approach to select abiotic environmental PCs and biotic variables (axes of floral and pollinator PCoAs) for use in variation partitioning analyses. Thus, we analyzed differences in pollinator and floral species composition among plots within each site or wildfire-severity level and among sites using three explanatory matrices (one with abiotic environment variables; the second with floral or pollinator variables; and the third with 2 spatial variables: longitude and latitude). Variation partitioning calculates the proportion of total variation in the response matrix explained by each explanatory matrix and the proportion of variation that is shared among explanatory matrices (Borcard et al., 2011; Legendre & Legendre, 2012; Peres-Neto et al., 2006). Here, we used the proportion of variation in pollinator or floral species composition explained by the other community alone (i.e. the extent to which variation in floral species composition not associated with the abiotic environment or geographic space predicts pollinator species composition, and vice versa) as a measure of the degree to which plant-pollinator associations drive species composition of pollinators and flowering-plants independently of the abiotic environment or geographic

distance.

To complement the variation partitioning analyses and to assess whether certain pollinator species co-occurred with certain plant species across plots in each site and wildfireseverity level, we performed an analysis of co-occurrence using c-scores (Gotelli, 2000; Gotelli & Ulrich, 2010; Stone & Roberts, 1990). The c-score, a measure of co-occurrence across plots, was calculated for each pollinator-plant species pair in each site and wildfire-severity level with the following equation:

$$C_{AB} = \frac{(R_A - SS)(R_B - SS)}{R_A R_B}$$

where R_A is the number of plots occupied by species A, R_B is the number of plots occupied by species B, and SS is the number of plots occupied jointly by both species. Therefore, for any pollinator-plant species pair, the c-score ranges from 0 (complete positive co-occurrence, i.e. the species pair only occurs together across plots) to 1 (complete negative co-occurrence, i.e. the species pair never occurs together across plots). We also used a null-model approach to calculate the c-score expected if species occurrence was randomly distributed across plots within a site. To do this, we preserved the total number of plots occupied by each species and the species richness of each plot, and randomized occurrences of all species given those constraints (Gotelli, 2000; Gotelli & Ulrich, 2010; Oksanen et al., 2019; R Core Team, 2015). We reiterated this null-model approach 1,000 times, calculating a distribution of 1,000 null c-score values for each pollinatorplant species pair. A species pair was determined to have significant positive/negative cooccurrence if its observed c-score was less than/greater than the middle 95% of null c-score values for that species pair respectively, and this is known as the simple 95% confidence interval (CI) criterion (Gotelli & Ulrich, 2010). We then evaluated if each species pair determined to be significant with the simple 95% CI criterion remained significant using the more restrictive Bayes mean-based criterion, which corrects for multiple comparisons by accounting for the expected distribution of c-scores (from the null model) within each of 250 equally sized bins from 0 to 1 (Gotelli & Ulrich, 2010).

References

- Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., ... Davies, K. F. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. *Ecology Letters*, 14(1), 19–28.
- Baker, W. L. (2009). *Fire ecology in Rocky Mountain landscapes*. Washington, D.C., USA: Island Press.
- Borcard, D., Gillet, F., & Legendre, P. (2011). *Numerical ecology with R*. New York, New York, USA: Springer Science & Business Media.
- Burkle, L. A., Myers, J. A., & Belote, R. T. (2015). Wildfire disturbance and productivity as drivers of plant species diversity across spatial scales. *Ecosphere*, *6*(10), 1–14.
- Burkle, L. A., Simanonok, M. P., Durney, J. S., Myers, J. A., & Belote, R. T. (2019). Wildfires Influence Abundance, Diversity, and Intraspecific and Interspecific Trait Variation of Native Bees and Flowering Plants Across Burned and Unburned Landscapes. *Frontiers in Ecology and Evolution*, 7. doi: 10.3389/fevo.2019.00252
- Dinno, A. (2018). *paran: Horn's Test of Principal Components/Factors* [R package version 1.5.2].
- Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., & Howard, S. (2007). A project for monitoring trends in burn severity. *Fire Ecology*, *3*(1), 3–21.

- Fischer, W. C., & Bradley, A. F. (1987). *Fire ecology of western Montana forest habitat types*. Ogden, Utah, USA: U.S. Forest Service.
- Gotelli, N. J. (2000). Null model analysis of species co-occurrence patterns. *Ecology*, 81(9), 2606–2621.
- Gotelli, N. J., & Ulrich, W. (2010). The empirical Bayes approach as a tool to identify non-random species associations. *Oecologia*, *162*(2), 463–477.
- Grundel, R., Jean, R. P., Frohnapple, K. J., Glowacki, G. A., Scott, P. E., & Pavlovic, N. B. (2010). Floral and nesting resources, habitat structure, and fire influence bee distribution across an open-forest gradient. *Ecological Applications*, 20(6), 1678–1692.
- Harmon, M. E. (1996). *Guidelines for measurements of woody detritus in forest ecosystems*. US LTER Network Office.
- Hessburg, P. F., & Agee, J. K. (2003). An environmental narrative of inland northwest United States forests, 1800–2000. *Forest Ecology and Management*, 178(1–2), 23–59.
- Hopwood, J. L. (2008). The contribution of roadside grassland restorations to native bee conservation. *Biological Conservation*, 141(10), 2632–2640.
- Kraft, N. J., Comita, L. S., Chase, J. M., Sanders, N. J., Swenson, N. G., Crist, T. O., ... Myers, J. A. (2011). Disentangling the drivers of beta diversity along latitudinal and elevational gradients. *Science*, 333(6050), 1755–1758. doi: 10.1126/science.1208584
- Legendre, P., & Legendre, L. F. (2012). *Numerical ecology* (Vol. 24). Amsterdam, The Netherlands: Elsevier.
- Luo, D., Ganesh, S., & Koolaard, J. (2020). predictmeans: Calculate Predicted Means for Linear Models [R package version 1.0.4]. Retrieved from https://CRAN.Rproject.org/package=predictmeans
- Mateos, E., Santos, X., & Pujade-Villar, J. (2011). Taxonomic and functional responses to fire and post-fire management of a Mediterranean Hymenoptera community. *Environmental Management*, 48(5), 1000.
- Miller, J. D., Safford, H. D., Crimmins, M., & Thode, A. E. (2009). Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. *Ecosystems*, 12(1), 16–32.
- Moretti, M., De Bello, F., Roberts, S. P., & Potts, S. G. (2009). Taxonomical vs. functional responses of bee communities to fire in two contrasting climatic regions. *Journal of Animal Ecology*, *78*(1), 98–108.
- Myers, J. A., Chase, J. M., Jiménez, I., Jørgensen, P. M., Araujo-Murakami, A., Paniagua-Zambrana, N., & Seidel, R. (2013). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. *Ecology Letters*, 16(2), 151–157.
- Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., ... Wagner, H. (2019). Vegan: Community Ecology Package. R package version 2.5-6(Computer Program). Retrieved from https://CRAN.R-project.org/package=vegan
- Peres-Neto, P. R., Legendre, P., Dray, S., & Borcard, D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. *Ecology*, 87(10), 2614–2625.
- Perry, D. A., Hessburg, P. F., Skinner, C. N., Spies, T. A., Stephens, S. L., Taylor, A. H., ... Riegel, G. (2011). The ecology of mixed severity fire regimes in Washington, Oregon, and Northern California. *Forest Ecology and Management*, 262(5), 703–717.
- Pinheiro, J., Bates, D., DebRoy, S., & Sarkar, D. (2020). nlme: Linear and Nonlinear Mixed Effects Models [R package version 3.1-149]. Retrieved from https://CRAN.Rproject.org/package=nlme

- Potts, S. G., Vulliamy, B., Roberts, S., O'Toole, C., Dafni, A., Ne'eman, G., & Willmer, P. (2005). Role of nesting resources in organising diverse bee communities in a Mediterranean landscape. *Ecological Entomology*, 30(1), 78–85.
- R Core Team. (2015). *R: A language and environment for statistical computing. Version* 3.2.0(Computer Program).
- Reese, E. G., Burkle, L. A., Delphia, C. M., & Griswold, T. (2018). A list of bees from three locations in the Northern Rockies Ecoregion (NRE) of western Montana. *Biodiversity Data Journal*, (6).
- Stone, L., & Roberts, A. (1990). The checkerboard score and species distributions. *Oecologia*, 85(1), 74–79.
- Tinker, D. B., & Knight, D. H. (2000). Coarse woody debris following fire and logging in Wyoming lodgepole pine forests. *Ecosystems*, *3*(5), 472–483.
- Vázquez, D. P., Alvarez, J. A., Debandi, G., Aranibar, J. N., & Villagra, P. E. (2011). Ecological consequences of dead wood extraction in an arid ecosystem. *Basic and Applied Ecology*, *12*(8), 722–732.
- Wang, T., Hamann, A., Spittlehouse, D., & Carroll, C. (2016). Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America. *PloS One*, 11(6), e0156720.
- Williams, A. P., Allen, C. D., Millar, C. I., Swetnam, T. W., Michaelsen, J., Still, C. J., & Leavitt, S. W. (2010). Forest responses to increasing aridity and warmth in the southwestern United States. *Proceedings of the National Academy of Sciences*, 107(50), 21289–21294.
- Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. *Remote Sensing of Environment*, 95(2), 164–176.

Fig. S1. Nonmetric multidimensional scaling (NMDS) for pollinator (A) and floral (B) communities in western Montana, showing the extent to which transects in each region and wildfire severity class had similar or distinct species composition (transects with more dissimilar species composition are farther from one another). The first two NMDS axes are shown for each community. The pollinator and floral regional species pools in the Helena region were most distinct from regional species pools in the Paradise and Whitefish regions, although species pools in Paradise and Whitefish also differed from one another

Fig. S2. Observed and standardized effect sizes for within-landscape β -diversity (multivariate distance from each site to the centroid of each burn ×region combination) for pollinator (A-F) and flowering-plant (G-L) species in each wildfire severity level in each of three regions in western Montana, USA. β -diversity standardized effect sizes (SES) or differences between observed β -diversity and the null model expectations (see text for details).

Fig. S3. The total number of pollinator (A-F) and flowering-plant (G-L) individuals and species in each wildfire severity level in each of three regions in western Montana, USA.

Fig. S4. Local (site-level) community size (total number of individuals) and local species richness for pollinator (A-F) and flowering-plant (G-L) species in each wildfire severity level in each of three regions in western Montana, USA.

Fig. S5. β -diversity expected from the null model (multivariate distance from each plot to the centroid of each wildfire-severity level × site combination) within each wildfire-severity level for pollinator and flowering-plant communities. Distance-to-centroids are calculated from Bray-Curtis dissimilarities. Unburned plots are in green, plots with mixed-severity wildfires are in yellow, and plots with high-severity wildfire are in red. Lower-case letters indicate the results of posthoc comparisons (different letters indicate significant contrasts), and lack of lower-case letters indicates that the overall GLMM ANOVA test was insignificant (p > 0.05, Table S1). Random effects are included for burn unit (block) nested within site.

Table S1. Parametric generalized linear mixed model (GLMM) and non-parametric permutational GLMM model (GLMM PermANOVA) results, testing for differences in regional abundance (total number of individuals combined across sites in a burn or unburned unit, rarefied to the minimum number of plots per burn unit), regional species richness (rarefied to the minimum number of plots per burn unit), regional rarefied species richness (first rarefied to the minimum number of plots per burn unit, then rarefied to the minimum number of individuals across burn units), local community size (total number of individuals in each plot), local species richness, local rarefied species richness, and within-landscape β -diversity among wildfire disturbance levels for pollinators and flowering plants. β -diversity was measured as the multivariate distance from each site to the centroid of each burn ×region combination. Expected distance-to-centroid reflects β -diversity expected given the composition of the species pool (calculated using null models, see text for details), and deviation distance-to-centroid reflects β -diversity standardized effect sizes (SES) or differences between observed β -diversity and the null model expectations. Random effects are included for burn unit (block) nested within region for local analyses and a random effect of region was included in regional analyses.

Pollinators

Tests for community size & species richness	F	Num DF	Dem DF	Р
Regional Abundance GLMM Mixed Var.	23.17	2	13	0.0001
Regional Abundance GLMM PermANOVA	8.27	2	13	0.006
Regional Species Richness GLMM Mixed Var.	27.17	2	13	< 0.0001
Regional Species Richness GLMM PermANOVA	10.55	2	13	0.003
Regional Rarefied Species Richness GLMM Mixed Var.	1.68	2	13	0.224
Regional Rarefied Species Richness GLMM PermANOVA	2.73	2	13	0.101
Local Community Size GLMM Mixed Var.	13.098	2	13	0.001
Local Community Size GLMM PermANOVA	11.890	2	13	0.001
Local Species Richness GLMM Mixed Var.	8.345	2	13	0.005
Local Species Richness GLMM PermANOVA	8.742	2	13	0.004
Local Rarefied Richness GLMM Mixed Var.	13.631	2	13	0.001
Local Rarefied Richness GLMM PermANOVA	11.714	2	13	0.002
Tests for within-landscape β-diversity	F	Num DF	Dem DF	Р
Obs distance to centroid GLMM Mixed Var.	6.490	2	13	0.011
Obs distance to centroid GLMM PermANOVA	7.680	2	13	0.005
Exp distance to centroid GLMM Mixed Var.	13.869	2	13	0.001
Exp distance to centroid GLMM PermANOVA	14.027	2	13	0.001
Dev distance to centroid GLMM Mixed Var.	4.827	2	13	0.027
Dev distance to centroid GLMM PermANOVA	3.466	2	13	0.028

Flowers

Tests for community size & species richness	F	Num DF	Dem DF	Р
Regional Abundance GLMM Mixed Var.	36.52	2	13	< 0.0001
Regional Abundance GLMM PermANOVA	8.52	2	13	0.006
Regional Species Richness GLMM Mixed Var.	6.24	2	13	0.013
Regional Species Richness GLMM PermANOVA	1.73	2	13	0.147
Regional Rarefied Species Richness GLMM Mixed Var.	3.12	2	13	0.078
Regional Rarefied Species Richness GLMM PermANOVA	A 1.18	2	13	0.291
Local Community Size GLMM Mixed Var.	10.386	2	13	0.002
Local Community Size GLMM PermANOVA	7.057	2	13	0.012
Local Species Richness GLMM Mixed Var.	2.992	2	13	0.085
Local Species Richness GLMM PermANOVA	3.536	2	13	0.046
Local Rarefied Richness GLMM Mixed Var.	0.686	2	13	0.521
Local Rarefied Richness GLMM PermANOVA	0.691	2	13	0.468
Tests for within-landscape β-diversity	F	Num DF	Dem DF	Р
Obs distance to centroid GLMM Mixed Var.	11.655	2	13	0.001
Obs distance to centroid GLMM PermANOVA	11.620	2	13	0.001
Exp distance to centroid GLMM Mixed Var.	5.735	2	13	0.016
Exp distance to centroid GLMM PermANOVA	8.065	2	13	0.002
Dev distance to centroid GLMM Mixed Var.	5.089	2	13	0.023
Dev distance to centroid GLMM PermANOVA	5.728	2	13	0.021

Table S2. Proportion of variation in species composition of pollinator and flowering-plant communities (β -diversity) in western Montana explained by the abiotic environment (see Table S1), the biotic environment (the variation in pollinators explained by flowers, and vice versa), and geographic distance. Isolated effect refers to the variation in β -diversity that is uniquely (independently) explained by only one explanatory factor. Shared effect refers to variation in β -diversity explained by covariation among two or three explanatory factors. Total effect refers to variation in β -diversity explained by the sum of isolated and all shared components for a particular explanatory factor. Only the total and isolated fractions can be tested for significance. Negative values of adjusted r^2 (r_a^2) indicate near zero explanatory power. Please see text for more details on the variation partitioning that produced these results.

Unburned pollinators

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.181	8	2.24	0.001
Total effect of abiotic env.	0.139	2	4.62	0.001
Total effect of biotic env.	0.155	4	3.07	0.001
Total effect of geo. distance	0.145	2	4.82	0.001
Isolated effect of abiotic env.	0.007	2	1.16	0.137
Isolated effect of biotic env.	0.032	4	1.40	0.001
Isolated effect of geo. distance	0.015	2	1.36	0.025
Shared effect of abiotic env. & geo.distance	0.004			
Shared effect of abiotic env. & biotic env.	-0.003			
Shared effect of biotic env. & geo.distance	-0.005			
Shared effect of abiotic env., biotic env. & geo. distance	0.131			
Residual variation	0.819			

Mixed-severity wildfire pollinators

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.266	10	2.88	0.001
Total effect of abiotic env.	0.136	1	9.19	0.001
Total effect of biotic env.	0.239	7	3.33	0.001
Total effect of geo. distance	0.211	2	7.97	0.001
Isolated effect of abiotic env.	0.002	1	1.14	0.210
Isolated effect of biotic env.	0.053	7	1.51	0.001
Isolated effect of geo. distance	0.019	2	1.58	0.001
Shared effect of abiotic env. & geo.distance	0.005			
Shared effect of abiotic env. & biotic env.	-0.002			
Shared effect of biotic env. & geo.distance	0.057			
Shared effect of abiotic env., biotic env. & geo. distance	0.130			
Residual variation	0.734			

High-severity wildfire pollinators

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.279	10	3.02	0.001
Total effect of abiotic env.	0.223	2	8.47	0.001
Total effect of biotic env.	0.255	6	3.97	0.001
Total effect of geo. distance	0.227	2	8.61	0.001
Isolated effect of abiotic env.	0.003	2	1.10	0.219
Isolated effect of biotic env.	0.041	6	1.46	0.001
Isolated effect of geo. distance	0.005	2	1.16	0.122
Shared effect of abiotic env. & geo.distance	0.016			
Shared effect of abiotic env. & biotic env.	0.008			
Shared effect of biotic env. & geo.distance	0.010			
Shared effect of abiotic env., biotic env. & geo. distance	0.196			
Residual variation	0.721			

Unburned flowers

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.200	11	2.02	0.001
Total effect of abiotic env.	0.161	3	3.88	0.001
Total effect of biotic env.	0.161	6	2.44	0.001
Total effect of geo. distance	0.154	2	5.08	0.001
Isolated effect of abiotic env.	0.011	3	1.18	0.094
Isolated effect of biotic env.	0.029	6	1.24	0.014
Isolated effect of geo. distance	0.000	2	1.00	0.477
Shared effect of abiotic env. & geo.distance	0.028			
Shared effect of abiotic env. & biotic env.	0.006			
Shared effect of biotic env. & geo.distance	0.010			
Shared effect of abiotic env., biotic env. & geo. distance	0.116			
Residual variation	0.800			

Mixed-severity wildfire flowers

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.289	11	2.92	0.001
Total effect of abiotic env.	0.212	2	8.00	0.001
Total effect of biotic env.	0.244	7	3.40	0.001
Total effect of geo. distance	0.215	2	8.12	0.001
Isolated effect of abiotic env.	0.012	2	1.36	0.029
Isolated effect of biotic env.	0.050	7	1.48	0.001
Isolated effect of geo. distance	0.011	2	1.33	0.040
Shared effect of abiotic env. & geo.distance	0.022			
Shared effect of abiotic env. & biotic env.	0.012			
Shared effect of biotic env. & geo.distance	0.016			
Shared effect of abiotic env., biotic env. & geo. distance	0.166			
Residual variation	0.711			

High-severity wildfire flowers

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.375	13	3.40	0.001
Total effect of abiotic env.	0.305	3	8.62	0.001
Total effect of biotic env.	0.358	8	4.62	0.001
Total effect of geo. distance	0.300	2	12.17	0.001
Isolated effect of abiotic env.	0.008	3	1.17	0.102
Isolated effect of biotic env.	0.055	8	1.51	0.001
Isolated effect of geo. distance	0.002	2	1.08	0.293
Shared effect of abiotic env. & geo.distance	0.007			
Shared effect of abiotic env. & biotic env.	0.012			
Shared effect of biotic env. & geo.distance	0.013			
Shared effect of abiotic env., biotic env. & geo. distance	0.278			
Residual variation	0.625			

Helena pollinators

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.203	13	2.00	0.001
Total effect of abiotic env.	0.081	3	2.51	0.001
Total effect of biotic env.	0.171	8	2.31	0.001
Total effect of geo. distance	0.083	2	3.32	0.001
Isolated effect of abiotic env.	0.004	3	1.07	0.259
Isolated effect of biotic env.	0.102	8	1.74	0.001
Isolated effect of geo. distance	0.013	2	1.32	0.033
Shared effect of abiotic env. & geo.distance	0.016			
Shared effect of abiotic env. & biotic env.	0.014			
Shared effect of biotic env. & geo.distance	0.007			
Shared effect of abiotic env., biotic env. & geo. distance	0.048			
Residual variation	0.797			

Paradise pollinators

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.277	16	2.13	0.001
Total effect of abiotic env.	0.128	1	7.89	0.001
Total effect of biotic env.	0.256	13	2.25	0.001
Total effect of geo. distance	0.143	2	4.92	0.001
Isolated effect of abiotic env.	0.001	1	1.05	0.382
Isolated effect of biotic env.	0.123	13	1.58	0.001
Isolated effect of geo. distance	0.017	2	1.38	0.024
Shared effect of abiotic env. & geo.distance	0.003			
Shared effect of abiotic env. & biotic env.	0.010			
Shared effect of biotic env. & geo.distance	0.010			
Shared effect of abiotic env., biotic env. & geo. distance	0.114			
Residual variation	0.723			

Whitefish pollinators

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.068	9	1.42	0.001
Total effect of abiotic env.	0.013	1	1.70	0.003
Total effect of biotic env.	0.078	6	1.72	0.001
Total effect of geo. distance	0.027	2	1.70	0.001
Isolated effect of abiotic env.	-0.004	1	0.83	0.772
Isolated effect of biotic env.	0.044	6	1.38	0.001
Isolated effect of geo. distance	-0.008	2	0.82	0.887
Shared effect of abiotic env. & geo.distance	0.001			
Shared effect of abiotic env. & biotic env.	0.001			
Shared effect of biotic env. & geo.distance	0.018			
Shared effect of abiotic env., biotic env. & geo. distance	0.015			
Residual variation	0.932			

Helena flowers

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.226	13	2.15	0.001
Total effect of abiotic env.	0.094	3	2.77	0.001
Total effect of biotic env.	0.159	8	2.20	0.001
Total effect of geo. distance	0.061	2	2.65	0.001
Isolated effect of abiotic env.	0.034	3	1.61	0.001
Isolated effect of biotic env.	0.096	8	1.71	0.001
Isolated effect of geo. distance	0.020	2	1.51	0.001
Shared effect of abiotic env. & geo.distance	0.014			
Shared effect of abiotic env. & biotic env.	0.036			
Shared effect of biotic env. & geo.distance	0.017			
Shared effect of abiotic env., biotic env. & geo. distance	0.011			
Residual variation	0.774			

Paradise flowers

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.277	9	3.00	0.001
Total effect of abiotic env.	0.230	3	5.67	0.001
Total effect of biotic env.	0.207	4	4.06	0.001
Total effect of geo. distance	0.210	2	7.25	0.001
Isolated effect of abiotic env.	0.024	3	1.46	0.005
Isolated effect of biotic env.	0.029	4	1.42	0.003
Isolated effect of geo. distance	0.019	2	1.52	0.008
Shared effect of abiotic env. & geo.distance	0.028			
Shared effect of abiotic env. & biotic env.	0.014			
Shared effect of biotic env. & geo.distance	0.000			
Shared effect of abiotic env., biotic env. & geo. distance	0.163			
Residual variation	0.723			

Whitefish flowers

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.248	15	2.12	0.001
Total effect of abiotic env.	0.104	2	3.94	0.001
Total effect of biotic env.	0.177	11	2.00	0.001
Total effect of geo. distance	0.123	2	4.56	0.001
Isolated effect of abiotic env.	0.034	2	1.86	0.001
Isolated effect of biotic env.	0.109	11	1.62	0.001
Isolated effect of geo. distance	0.018	2	1.47	0.017
Shared effect of abiotic env. & geo.distance	0.019			
Shared effect of abiotic env. & biotic env.	-0.017			
Shared effect of biotic env. & geo.distance	0.018			
Shared effect of abiotic env., biotic env. & geo. distance	0.067			
Residual variation	0.752			

i onnators across an sites and whume-severity levels				
Explanatory variables	r_a^2	df	F	P
Combined effect of abiotic env., biotic env. & geo. distance	0.223	33	2.31	0.001
Total effect of abiotic env.	0.129	3	8.46	0.001
Total effect of biotic env.	0.214	28	2.46	0.001
Total effect of geo. distance	0.119	2	11.17	0.001
Isolated effect of abiotic env.	0.002	3	1.10	0.088
Isolated effect of biotic env.	0.074	28	1.50	0.001
Isolated effect of geo. distance	0.004	2	1.28	0.004
Shared effect of abiotic env. & geo.distance	0.004			
Shared effect of abiotic env. & biotic env.	0.028			
Shared effect of biotic env. & geo.distance	0.016			
Shared effect of abiotic env., biotic env. & geo. distance	0.096			
Residual variation	0.777			

Pollinators across all sites and wildfire-severity levels

Flowers across all sites and wildfire-severity levels

Explanatory variables	r_a^2	df	F	Р
Combined effect of abiotic env., biotic env. & geo. distance	0.252	28	2.81	0.001
Total effect of abiotic env.	0.146	4	7.47	0.001
Total effect of biotic env.	0.217	22	2.90	0.001
Total effect of geo. distance	0.116	2	10.88	0.001
Isolated effect of abiotic env.	0.022	4	1.91	0.001
Isolated effect of biotic env.	0.080	22	1.70	0.001
Isolated effect of geo. distance	0.011	2	1.95	0.001
Shared effect of abiotic env. & geo.distance	0.002			
Shared effect of abiotic env. & biotic env.	0.035			
Shared effect of biotic env. & geo.distance	0.014			
Shared effect of abiotic env., biotic env. & geo. distance	0.089			
Residual variation	0.748			

Table S3. Importance of abiotic environmental variables (principal components) to explaining variation in species composition of pollinator and flowering-plant communities (β -diversity) in western Montana. The overall test for significance of the entire predictor matrix is in parentheses. Please see text for more details on the principal components analysis and variation partitioning that produced these results.

$\underbrace{CIDUINCU pointators (1 2.00, p 0.001)}$						
Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.117	0.117	0.097	5.85	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.060	0.177	0.139	3.11	0.001
Mixed-severity wildfire pollinators (<i>F</i> = 4.22; <i>p</i> = 0.001)						
Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.153	0.153	0.136	9.19	0.001
High-severity wildfire pollinators ($F = 4.74$; $p = 0.001$)						
Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.159	0.159	0.142	9.62	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.094	0.253	0.223	6.31	0.001
Unburned flowers (<i>F</i> = 3.17; <i>p</i> = 0.001)						
Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.098	0.098	0.077	4.77	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.093	0.191	0.153	4.93	0.001
PC3 (Fire, soils, woody debris)	3	0.026	0.217	0.161	1.40	0.024

Unburned pollinators (F = 2.88; p = 0.001)

Mixed-severity wildfire flowers (F = 4.57; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.146	0.146	0.130	8.74	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.096	0.242	0.212	6.34	0.001

High-severity wildfire flowers (F = 6.72; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.192	0.192	0.176	12.09	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.134	0.326	0.299	9.92	0.001
PC4 (Soils, aspect, woody debris)	3	0.020	0.345	0.305	1.48	0.035

Helena pollinators (F = 2.16; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC2 (Elevation, climate, soils, NPP)	1	0.073	0.073	0.054	3.94	0.001
PC3 (Fire, soils, woody debris)	2	0.033	0.106	0.069	1.80	0.009
PC1 (Climate, soils, NPP, slope)	3	0.030	0.135	0.081	1.64	0.017

Paradise pollinators (F = 2.86; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC3 (Fire, soils, woody debris)	1	0.146	0.146	0.128	7.89	0.001

Whitefish pollinators (F = 1.32; p = 0.004)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC3 (Fire, soils, woody debris)	1	0.033	0.033	0.013	1.70	0.007

Helena flowers (F = 2.36; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC3 (Fire, soils, woody debris)	1	0.059	0.059	0.040	3.11	0.001
PC1 (Climate, soils, NPP, slope)	2	0.052	0.111	0.074	2.88	0.001
PC2 (Elevation, climate, soils, NPP)	3	0.037	0.148	0.094	2.07	0.002

Paradise flowers (F = 4.56; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC3 (Fire, soils, woody debris)	1	0.175	0.175	0.157	9.75	0.001
PC1 (Climate, soils, NPP, slope)	2	0.068	0.242	0.209	4.01	0.001
PC2 (Elevation, climate, soils, NPP)	3	0.036	0.279	0.230	2.21	0.001

Whitefish flowers (F = 2.60; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC3 (Fire, soils, woody debris)	1	0.101	0.101	0.083	5.61	0.001
PC1 (Climate, soils, NPP, slope)	2	0.038	0.139	0.104	2.15	0.004

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.084	0.084	0.078	13.70	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.039	0.123	0.111	6.64	0.001
PC3 (Fire, soils, woody debris)	3	0.024	0.146	0.129	4.11	0.001

Pollinators across all sites and wildfire-severity levels (F = 6.63; p = 0.001)

Flowers across all sites and wildfire-severity levels (F = 7.47; p = 0.001)

Principal component	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
PC1 (Climate, soils, NPP, slope)	1	0.073	0.073	0.067	11.76	0.001
PC2 (Elevation, climate, soils, NPP)	2	0.047	0.120	0.108	7.96	0.001
PC3 (Fire, soils, woody debris)	3	0.041	0.160	0.143	7.16	0.001
PC4 (Soils, aspect, woody debris)	4	0.009	0.169	0.146	1.52	0.007

Table S4. Importance of biotic environmental axes (principal coordinates based on Bray-Curtis dissimilarities) to explaining variation in species composition of pollinator and flowering-plant communities (β -diversity) in western Montana. The overall test for significance of the entire predictor matrix is in parentheses. Please see text for more details on the distance-based approach, forward-stepwise model selection, and variation partitioning that produced these results.

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.098	0.098	0.078	4.78	0.001
Floral axis 2	2	0.076	0.174	0.135	3.94	0.001
Floral axis 6	3	0.031	0.204	0.148	1.62	0.003
Floral axis 7	4	0.026	0.231	0.155	1.40	0.034

Unburned pollinators (F = 1.66; p = 0.001)

Mixed-severity wildfire pollinators (F = 1.38; p = 0.001)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.143	0.143	0.126	8.51	0.001
Floral axis 2	2	0.070	0.213	0.182	4.47	0.001
Floral axis 3	3	0.031	0.245	0.199	2.04	0.001
Floral axis 12	4	0.026	0.271	0.211	1.74	0.002
Floral axis 35	5	0.025	0.296	0.222	1.69	0.004
Floral axis 52	6	0.023	0.319	0.230	1.54	0.011
Floral axis 6	7	0.022	0.341	0.239	1.52	0.013

High-severity wildfire pollinators (F = 1.66; p = 0.015)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.166	0.166	0.150	10.15	0.001
Floral axis 2	2	0.077	0.243	0.212	5.07	0.001
Floral axis 3	3	0.030	0.273	0.228	2.04	0.001
Floral axis 4	4	0.027	0.300	0.241	1.82	0.002
Floral axis 47	5	0.021	0.321	0.248	1.46	0.040
Floral axis 5	6	0.020	0.341	0.255	1.43	0.028

Unburned flowers (*F* = 1.41; *p* = 0.001)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.095	0.095	0.075	4.63	0.001
Pollinator axis 2	2	0.061	0.156	0.117	3.12	0.001
Pollinator axis 7	3	0.035	0.191	0.133	1.79	0.005
Pollinator axis 6	4	0.029	0.220	0.144	1.51	0.025
Pollinator axis 29	5	0.027	0.246	0.152	1.42	0.036
Pollinator axis 19	6	0.026	0.273	0.161	1.42	0.037

Mixed-severity wildfire flowers (F = 1.41; p = 0.027)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.147	0.147	0.130	8.79	0.001
Pollinator axis 2	2	0.085	0.232	0.201	5.52	0.001
Pollinator axis 3	3	0.028	0.260	0.214	1.83	0.006
Pollinator axis 26	4	0.024	0.283	0.224	1.60	0.012
Pollinator axis 19	5	0.021	0.305	0.231	1.44	0.037
Pollinator axis 38	6	0.021	0.326	0.238	1.43	0.038
Pollinator axis 24	7	0.020	0.346	0.244	1.40	0.049

High_severity	wildfire flowers	$(F = 3 \ 41 \cdot n = 0 \ 001)$
ingn-severny	whull c howers	(I' - J.+I, p - 0.001)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.191	0.191	0.175	12.02	0.001
Pollinator axis 2	2	0.129	0.320	0.293	9.51	0.001
Pollinator axis 5	3	0.036	0.356	0.317	2.77	0.001
Pollinator axis 6	4	0.025	0.381	0.329	1.91	0.003
Pollinator axis 7	5	0.021	0.402	0.338	1.65	0.010
Pollinator axis 15	6	0.018	0.420	0.345	1.47	0.024
Pollinator axis 4	7	0.018	0.439	0.351	1.44	0.042
Pollinator axis 8	8	0.018	0.456	0.358	1.46	0.045

Helena pollinators (F = 1.45; p = 0.004)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.078	0.078	0.060	4.23	0.001
Floral axis 7	2	0.043	0.121	0.085	2.38	0.001
Floral axis 3	3	0.040	0.161	0.109	2.31	0.001
Floral axis 4	4	0.033	0.194	0.126	1.95	0.002
Floral axis 13	5	0.027	0.222	0.137	1.61	0.016
Floral axis 26	6	0.027	0.249	0.149	1.63	0.006
Floral axis 2	7	0.027	0.276	0.161	1.64	0.003
Floral axis 6	8	0.025	0.301	0.171	1.53	0.019

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.165	0.165	0.147	9.07	0.001
Floral axis 27	2	0.032	0.196	0.161	1.77	0.004
Floral axis 41	3	0.026	0.222	0.169	1.47	0.015
Floral axis 33	4	0.026	0.248	0.178	1.47	0.028
Floral axis 12	5	0.025	0.273	0.187	1.45	0.023
Floral axis 10	6	0.025	0.298	0.195	1.46	0.014
Floral axis 6	7	0.025	0.323	0.204	1.45	0.029
Floral axis 16	8	0.024	0.347	0.213	1.44	0.030
Floral axis 17	9	0.024	0.370	0.221	1.43	0.045
Floral axis 22	10	0.024	0.394	0.230	1.44	0.029
Floral axis 3	11	0.023	0.417	0.239	1.41	0.042
Floral axis 2	12	0.023	0.440	0.247	1.41	0.038
Floral axis 9	13	0.022	0.462	0.256	1.41	0.046

Paradise pollinators (F = 1.56; p = 0.002)

Whitefish pollinators (F = 1.36; p = 0.032)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.047	0.047	0.028	2.47	0.001
Floral axis 2	2	0.034	0.081	0.044	1.83	0.004
Floral axis 23	3	0.028	0.110	0.054	1.52	0.017
Floral axis 18	4	0.027	0.136	0.063	1.45	0.030
Floral axis 6	5	0.025	0.162	0.071	1.39	0.043
Floral axis 41	6	0.025	0.187	0.078	1.39	0.038

Helena flowers (F = 1.56; p = 0.001)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.079	0.079	0.061	4.29	0.001
Pollinator axis 3	2	0.044	0.123	0.087	2.46	0.001
Pollinator axis 23	3	0.036	0.160	0.107	2.08	0.001
Pollinator axis 20	4	0.030	0.190	0.121	1.77	0.006
Pollinator axis 25	5	0.026	0.216	0.131	1.52	0.034
Pollinator axis 4	6	0.026	0.242	0.140	1.51	0.036
Pollinator axis 21	7	0.025	0.267	0.150	1.50	0.031
Pollinator axis 2	8	0.024	0.291	0.159	1.47	0.035

Paradise flowers (F = 1.48; p = 0.003)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.184	0.184	0.166	10.34	0.001
Pollinator axis 12	2	0.039	0.222	0.187	2.23	0.003
Pollinator axis 19	3	0.026	0.248	0.197	1.55	0.018
Pollinator axis 33	4	0.026	0.274	0.207	1.52	0.029

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.057	0.057	0.038	3.03	0.001
Pollinator axis 11	2	0.039	0.096	0.059	2.10	0.005
Pollinator axis 6	3	0.037	0.133	0.079	2.06	0.003
Pollinator axis 2	4	0.033	0.166	0.095	1.89	0.010
Pollinator axis 3	5	0.031	0.197	0.110	1.75	0.016
Pollinator axis 26	6	0.029	0.226	0.123	1.71	0.012
Pollinator axis 13	7	0.029	0.255	0.136	1.68	0.025
Pollinator axis 28	8	0.026	0.281	0.147	1.56	0.045
Pollinator axis 5	9	0.025	0.306	0.157	1.52	0.037
Pollinator axis 8	10	0.025	0.331	0.167	1.51	0.044
Pollinator axis 17	11	0.024	0.355	0.177	1.49	0.039

<u>Whitefish flowers (F = 1.49; p = 0.001)</u>

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Floral axis 1	1	0.079	0.079	0.073	12.83	0.001
Floral axis 2	2	0.044	0.123	0.111	7.49	0.001
Floral axis 3	3	0.032	0.155	0.138	5.69	0.001
Floral axis 6	4	0.017	0.172	0.150	2.96	0.001
Floral axis 5	5	0.012	0.185	0.157	2.23	0.001
Floral axis 4	6	0.012	0.197	0.163	2.19	0.001
Floral axis 8	7	0.010	0.207	0.168	1.85	0.001
Floral axis 21	8	0.009	0.216	0.172	1.65	0.001
Floral axis 14	9	0.009	0.225	0.176	1.63	0.001
Floral axis 48	10	0.008	0.233	0.179	1.54	0.002
Floral axis 7	11	0.008	0.241	0.182	1.52	0.001
Floral axis 104	12	0.008	0.250	0.185	1.51	0.002
Floral axis 10	13	0.008	0.257	0.187	1.44	0.007
Floral axis 113	14	0.007	0.265	0.189	1.34	0.012
Floral axis 34	15	0.007	0.272	0.191	1.34	0.011
Floral axis 12	16	0.007	0.279	0.193	1.34	0.010
Floral axis 13	17	0.007	0.286	0.195	1.33	0.011
Floral axis 65	18	0.007	0.293	0.197	1.30	0.023
Floral axis 16	19	0.007	0.300	0.199	1.29	0.030
Floral axis 66	20	0.007	0.306	0.201	1.28	0.028
Floral axis 15	21	0.007	0.313	0.202	1.27	0.037
Floral axis 94	22	0.007	0.320	0.204	1.27	0.026
Floral axis 71	23	0.007	0.327	0.206	1.27	0.026
Floral axis 9	24	0.007	0.333	0.207	1.27	0.034
Floral axis 105	25	0.007	0.340	0.209	1.26	0.030
Floral axis 63	26	0.007	0.346	0.210	1.26	0.030
Floral axis 118	27	0.007	0.353	0.212	1.25	0.045
Floral axis 119	28	0.006	0.359	0.214	1.24	0.044

Pollinators across all sites and wildfire-severity levels (F = 1.54; p = 0.002)

Principal coordinate	Rank	r^2	Cumulative r^2	Cumulative r_a^2	F	Р
Pollinator axis 1	1	0.084	0.084	0.078	13.71	0.001
Pollinator axis 2	2	0.058	0.141	0.130	10.00	0.001
Pollinator axis 3	3	0.021	0.162	0.145	3.62	0.001
Pollinator axis 5	4	0.018	0.180	0.157	3.21	0.001
Pollinator axis 4	5	0.018	0.198	0.170	3.26	0.001
Pollinator axis 6	6	0.010	0.208	0.175	1.91	0.003
Pollinator axis 21	7	0.009	0.218	0.179	1.73	0.003
Pollinator axis 18	8	0.009	0.226	0.183	1.64	0.002
Pollinator axis 9	9	0.008	0.235	0.186	1.57	0.002
Pollinator axis 46	10	0.008	0.243	0.189	1.50	0.002
Pollinator axis 23	11	0.008	0.251	0.192	1.47	0.009
Pollinator axis 15	12	0.008	0.259	0.195	1.47	0.006
Pollinator axis 27	13	0.008	0.266	0.197	1.46	0.007
Pollinator axis 12	14	0.008	0.274	0.200	1.42	0.005
Pollinator axis 35	15	0.008	0.281	0.202	1.43	0.012
Pollinator axis 17	16	0.008	0.289	0.205	1.43	0.012
Pollinator axis 51	17	0.007	0.296	0.207	1.40	0.015
Pollinator axis 48	18	0.007	0.304	0.209	1.38	0.009
Pollinator axis 13	19	0.007	0.311	0.212	1.37	0.022
Pollinator axis 29	20	0.007	0.318	0.213	1.30	0.037
Pollinator axis 75	21	0.007	0.324	0.215	1.30	0.035
Pollinator axis 141	22	0.007	0.331	0.217	1.30	0.034

Flowers across all sites and wildfire-severity levels (F = 1.46; p = 0.001)

Table S5. Number and proportion (out of all possible pollinator-plant species pairs) of pollinator-plant species pairs with significant positive and negative co-occurrences across sites in each of three regions of western Montana, USA. The number (proportion) of species pairs with significant co-occurrence using the 95% confidence interval (95% CI) criterion (observed value falls outside the middle 95% of null values) and the more restrictive Bayesian mean-based criterion (Gotelli and Ulrich 2010) are shown. Also shown are the number and proportion of pollinator-plant species pairs that exhibit positive co-occurrences (i.e. aggregation) across sites in each of three regions. Positive co-occurrences indicate that a pollinator-plant species pair species pair co-occurrences indicate that a pollinator-plant species occurrences indicate that a pollinator species occurrences indicate that a pollinator-plant species occurrences across sites (as determined by null-model analysis, see methods), and negative co-occurrences indicate that a pollinator-plant species pair species pair co-occurrences indicate that a pollinator-plant species pair co-occurrences indicate that a pollinator-plant species pair co-occurs less often than expected from 1,000 random redistributions of species occurrences across sites.

	Number (proportion) of species with positive or negative co-occurrence with the other linked trophic level		Number (proportion) of species with positive co-occurrence with the other linked trophic level		
	95% CI	Bayes mean criterion	95% CI	Bayes mean criterion	
Helena pollinators	161 (61.2 %)	84 (31.9 %)	140 (53.2 %)	48 (18.3 %)	
Paradise pollinators	58 (41.7 %)	56 (40.3 %)	46 (33.1 %)	44 (31.7 %)	
Whitefish pollinators	16 (18.6 %)	13 (15.1 %)	15 (17.4 %)	13 (15.1 %)	
Helena flowers	105 (84.0 %)	58 (46.4 %)	92 (73.6 %)	35 (28.0 %)	
Paradise flowers	47 (57.3 %)	47 (57.3 %)	41 (50.0 %)	38 (46.3 %)	
Whitefish flowers	25 (49.0 %)	19 (37.3 %)	21 (41.2 %)	18 (35.3 %)	

	Number (proportion) of species with positive or negative co-occurrence with the other linked trophic level		Number (pro positiv with the oth	ortion) of species with co-occurrence r linked trophic level	
	95% CI	Bayes mean criterion	95% CI	Bayes mean criterion	
Unburned pollinators	74 (48.7 %)	73 (48.0 %)	73 (48.0 %)	72 (47.4 %)	
Mixed-severity pollinators	137 (55.7 %)	132 (53.7 %)	124 (50.4 %)	111 (45.1 %)	
High-severity pollinators	135 (56.0 %)	129 (53.5 %)	106 (44.0 %)	106 (44.0 %)	
Unburned flowers	74 (59.2 %)	72 (57.6 %)	72 (57.6 %)	67 (53.6 %)	
Mixed-severity flowers	105 (72.4 %)	101 (69.7 %)	95 (65.5 %)	90 (62.1 %)	
High-severity flowers	80 (62.5 %)	78 (60.9 %)	72 (56.3 %)	71 (55.5 %)	

Table S6. Pollinator-plant species pairs in each region that showed positive co-occurrence (aggregation) based on the 95% confidence interval (CI) criterion. Species pairs that reached significance with the more restrictive Bayes mean-based criterion (BMC) are indicated in the last column. See methods for more details on the significance criteria for co-occurrence analyses.

Pollinator species	Flower species	BMC
Andrena lawrencei	Balsamorhiza sagittata	0
Andrena lawrencei	Centaurea stoebe	0
Andrena milwaukeensis	Descurainia pinnata	0
Andrena nivalis	Astragalus tenellus	1
Andrena nivalis	Crepis atribarba	1
Andrena nivalis	Symphyotrichum ascendens	0
Andrena nivalis	Tragopogon dubius	0
Andrena surda	Stellaria longipes	0
Andrena thaspii	Lupinus sericeus	0
Andrena transnigra	Leucanthemum vulgare	0
Anthidium clypeodentatum	Astragalus convallarius	1
Anthidium clypeodentatum	Carduus nutans	1
Anthidium clypeodentatum	Gaillardia aristata	1
Anthidium clypeodentatum	Medicago lupulina	1
Anthidium mormonum	Melilotus officinalis	1
Anthidium mormonum	Tragopogon dubius	1
Anthidium mormonum	Lactuca serriol	0
Anthidium mormonum	Linaria dalmatica	0
Anthidium mormonum	Symphyotrichum falcatum	0
Anthidium tenuiflorae	Astragalus drummondii	0
Anthidium tenuiflorae	Astragalus flexuosus	0
Anthidium utahense	Astragalus alpinus	1
Anthidium utahense	Medicago lupulina	1
Anthidium utahense	Solidago missouriensis	1
Anthidium utahense	Symphyotrichum falcatum	1
Anthidium utahense	Tragopogon dubius	1
Anthidium utahense	Alyssum alyssoides	0
Anthidium utahense	Centaurea stoebe	0
Anthidium utahense	Linaria dalmatica	0
Anthophora bomboides	Sedum lanceolatum	0
Anthophora terminalis	Taraxacum officinale	1
Anthophora terminalis	Tragopogon dubius	1
Anthophora terminalis	Linaria dalmatica	0
Anthophora urbana	Centaurea stoebe	1
Anthophora ursina	Verbascum thapsus	1
Anthophora ursina	Epilobium brachycarpum	0

Helena Region (positive co-occurrences)

Anthrax pauper	Grindelia squarrosa	0
Apis mellifera	Melilotus officinalis	1
Apis mellifera	Centaurea stoebe	0
Apis mellifera	Linaria dalmatica	0
Apis mellifera	Sisymbrium loeselii	0
Apis mellifera	Symphyotrichum falcatum	0
Ashmeadiella bucconis	Centaurea stoebe	1
Ashmeadiella bucconis	Evolvulus nuttallianus	1
Ashmeadiella bucconis	Taraxacum officinale	1
Ashmeadiella bucconis	Verbascum thapsus	1
Ashmeadiella bucconis	Sisymbrium loeselii	0
Ashmeadiella cactorum	Astragalus miser	1
Ashmeadiella cactorum	Geum triflorum	1
Ashmeadiella californica	Lomatium triternatum	1
Bombus appositus	Alyssum alyssoides	1
Bombus appositus	Carduus nutans	1
Bombus appositus	Centaurea stoebe	1
Bombus appositus	Medicago lupulina	1
Bombus appositus	Melilotus officinalis	1
Bombus appositus	Sisymbrium loeselii	1
Bombus appositus	Solidago missouriensis	1
Bombus appositus	Taraxacum officinale	1
Bombus appositus	Tragopogon dubius	1
Bombus appositus	Cirsium arvense	0
Bombus appositus	Linaria dalmatica	0
Bombus appositus	Verbascum thapsus	0
Bombus borealis	Grindelia squarrosa	0
Bombus centralis	Lithospermum ruderale	0
Bombus fervidus	Carduus nutans	1
Bombus fervidus	Gaillardia aristata	1
Bombus fervidus	Linaria dalmatica	1
Bombus fervidus	Taraxacum officinale	1
Bombus fervidus	Tragopogon dubius	0
Bombus huntii	Taraxacum officinale	1
Bombus rufocinctus	Symphyotrichum laeve	1
Ceratina neomexicana	Tragopogon dubius	0
Cercyonis oetus.charon	Lithospermum ruderale	0
Coelioxys alternata	Verbascum thapsus	1
Coelioxys alternata	Taraxacum officinale	0
Coelioxys porterae	Cirsium arvense	0
Coelioxys porterae	Erysimum inconspicuum	0
Coelioxys sodalis	Ipomopsis spicata	0
Coelioxys sodalis	Stenotus acaulis	0

Colletes fulgidus	Medicago lupulina	1
Colletes fulgidus	Penstemon eriantherus	1
Colletes fulgidus	Symphyotrichum falcatum	1
Colletes fulgidus	Centaurea stoebe	0
Colletes fulgidus	Lactuca tatarica	0
Colletes fulgidus	Linaria dalmatica	0
Colletes fulgidus	Solidago missouriensis	0
Colletes fulgidus	Symphyotrichum ascendens	0
Colletes fulgidus	Symphyotrichum ericoides	0
Colletes kincaidii	Linaria dalmatica	0
Colletes kincaidii	Melilotus officinalis	0
Colletes lutzi.lutzi	Solidago simplex	0
Colletes phaceliae	Gaillardia aristata	1
Colletes phaceliae	Solidago missouriensis	1
Colletes phaceliae	Symphyotrichum falcatum	1
Colletes phaceliae	Taraxacum officinale	1
Colletes phaceliae	Linaria dalmatica	0
Colletes phaceliae	Tragopogon dubius	0
Colletes phaceliae	Verbascum thapsus	0
Conophorus sackenii	Erigeron caespitosus	0
Diadasia diminuta	Dalea purpurea	0
Dianthidium ulkei	Epilobium brachycarpum	0
Dufourea maura	Sedum lanceolatum	1
Dufourea maura	Antennaria microphylla	0
Dufourea maura	Campanula rotundifolia	0
Dufourea trochantera	Astragalus agrestis	0
Eristalis Eoseristalis hirta	Cirsium vulgare	0
Eristalis Eoseristalis hirta	Zigadenus venenosus	0
Eristalis Eristalis tenax	Grindelia squarrosa	0
Eucera edwardsii	Centaurea stoebe	1
Eucera edwardsii	Symphyotrichum ascendens	0
Eucera edwardsii	Symphyotrichum laeve	0
Eucera frater	Symphyotrichum ascendens	0
Eucera frater	Symphyotrichum laeve	0
Eupeodes snowi	Verbascum thapsus	1
Eupeodes snowi	Agoseris glauca	0
Eupeodes snowi	Taraxacum officinale	0
Exoprosopa dorcadion	Symphyotrichum laeve	0
Halictus ligatus	Alyssum alyssoides	1
Halictus ligatus	Crepis tectorum	1
Halictus ligatus	Gaillardia aristata	1
Halictus ligatus	Solidago missouriensis	1
Halictus ligatus	Tragopogon dubius	1

Halictus ligatus	Descurainia pinnata	0
Halictus ligatus	Linaria dalmatica	0
Halictus rubicundus	Penstemon eriantherus	0
Halictus tripartitus	Medicago lupulina	1
Halictus tripartitus	Solidago missouriensis	1
Hellinsia paleaceus	Leucanthemum vulgare	0
Heriades carinatus	Anemone multifida	1
Heriades carinatus	Arenaria capillaris	1
Heriades carinatus	Hedysarum boreale	1
Heriades carinatus	Lithospermum ruderale	1
Heriades carinatus	Arabis holboellii var. retrofracta	0
Heriades variolosa	Lomatium triternatum	0
Heriades variolosa	Oxytropis sericea	0
Hesperia colorado	Apocynum androsaemifolium	0
Hoplitis fulgida fulgida	Dalea candida	0
Hoplitis fulgida fulgida	Dalea purpurea	0
Hoplitis grinnelli	Alyssum alyssoides	0
Hoplitis grinnelli	Alyssum desertorum	0
Hoplitis grinnelli	Cirsium vulgare	0
Hoplitis grinnelli	Epilobium brachycarpum	0
Hoplitis hypocrita	Cirsium arvense	1
Hoplitis hypocrita	Gaillardia aristata	1
Hoplitis hypocrita	Linaria dalmatica	1
Hoplitis hypocrita	Sisymbrium loeselii	1
Hoplitis hypocrita	Taraxacum officinale	1
Hoplitis hypocrita	Tragopogon dubius	1
Hoplitis hypocrita	Verbascum thapsus	1
Hoplitis hypocrita	Alyssum desertorum	0
Hoplitis hypocrita	Centaurea stoebe	0
Hoplitis hypocrita	Symphyotrichum falcatum	0
Hoplitis producta	Arabis nuttallii	0
Hoplitis truncata	Linaria dalmatica	1
Hylaeus coloradensis	Astragalus miser	0
Hylaeus rudbeckiae	Lithospermum incisum	1
Hylaeus Hylaeus annulatus	Arabis holboellii	0
Hylaeus Hylaeus leptocephalus	Lomatium triternatum	1
Hylaeus Hylaeus leptocephalus	Astragalus gracilis	0
Hylaeus Hylaeus leptocephalus	Collomia linearis	0
Hylaeus Hylaeus leptocephalus	Sisymbrium loeselii	0
Lasioglossum egregium	Crepis atribarba	1
Lasioglossum egregium	Arnica angustifolia	0
Lasioglossum egregium	Symphyotrichum ascendens	0
Lasioglossum Dialictus abundipunctum	Lupinus sericeus	0

Lasioglossum Dialictus aff. caducum	Hedysarum boreale	0
Lasioglossum Dialictus albipenne	Alyssum alyssoides	1
Lasioglossum Dialictus albipenne	Centaurea stoebe	1
Lasioglossum Dialictus albipenne	Sisymbrium loeselii	1
Lasioglossum Dialictus albipenne	Solidago missouriensis	1
Lasioglossum Dialictus albipenne	Symphyotrichum falcatum	1
Lasioglossum Dialictus albipenne	Taraxacum officinale	1
Lasioglossum Dialictus albipenne	Verbascum thapsus	1
Lasioglossum Dialictus albipenne	Gaillardia aristata	0
Lasioglossum Dialictus albipenne	Linaria dalmatica	0
Lasioglossum Dialictus albipenne	Medicago lupulina	0
Lasioglossum Dialictus albipenne	Symphyotrichum laeve	0
Lasioglossum Dialictus albipenne	Tragopogon dubius	0
Lasioglossum Dialictus marinense	Cirsium arvense	1
Lasioglossum Dialictus marinense	Arabis nuttallii	0
Lasioglossum Dialictus marinense	Campanula rotundifolia	0
Lasioglossum Dialictus marinense	Carduus nutans	0
Lasioglossum Dialictus marinense	Lithospermum ruderale	0
Lasioglossum Dialictus marinense	Zigadenus venenosus	0
Lasioglossum Dialictus nr. pavoninum	Penstemon procerus	0
Lasioglossum Dialictus occidentale	Medicago lupulina	0
Lasioglossum Dialictus ruidosense	Allium cernuum	1
Lasioglossum Dialictus ruidosense	Centaurea stoebe	1
Lasioglossum Dialictus ruidosense	Tragopogon dubius	1
Lasioglossum Dialictus ruidosense	Linaria dalmatica	0
Lasioglossum Dialictus sp. M7	Leucanthemum vulgare	0
Lasioglossum Dialictus succinipenne	Liatris punctata	0
Lasioglossum Dialictus succinipenne	Medicago lupulina	0
Lasioglossum Evylaeus sp. Fl	Helianthus annuus	0
Lasioglossum Evylaeus sp. F2	Lithospermum ruderale	0
Lasioglossum Evylaeus sp. F3	Zigadenus venenosus	0
Megachile angelarum	Campanula rotundifolia	0
Megachile angelarum	Symphyotrichum laeve	0
Megachile apicalis	Taraxacum officinale	1
Megachile apicalis	Centaurea stoebe	0
Megachile apicalis	Linaria dalmatica	0
Megachile apicalis	Melilotus officinalis	0
Megachile apicalis	Solidago missouriensis	0
Megachile apicalis	Solidago multiradiata	0
Megachile apicalis	Tragopogon dubius	0
Megachile brevis	Gutierrezia sarothrae	0
Megachile brevis	Symphyotrichum falcatum	0
Megachile campanulae	Astragalus tenellus	0

Megachile fidelis	Symphyotrichum laeve	0
Megachile fidelis	Taraxacum officinale	0
Megachile fidelis	Verbascum thapsus	0
Megachile lapponica	Astragalus gracilis	0
Megachile lapponica	Astragalus tenellus	0
Megachile lapponica	Lupinus sericeus	0
Megachile montivaga	Campanula rotundifolia	0
Megachile montivaga	Symphyotrichum ericoides	0
Megachile pugnata	Sisymbrium loeselii	1
Megachile pugnata	Descurainia incana	0
Megachile relativa	Medicago lupulina	1
Megachile relativa	Carduus nutans	0
Melissodes confusa	Geranium viscosissimum	0
Melissodes microsticta	Astragalus miser	0
Melissodes microsticta	Melilotus officinalis	0
Melissodes Eumelissodes microsticta	Centaurea stoebe	0
Melissodes Eumelissodes microsticta	Linaria dalmatica	0
Melissodes Eumelissodes microsticta	Solidago missouriensis	0
Nomada edwardsii	Anemone multifida	0
Nomada sp. F2	Astragalus drummondii	0
Nomada sp. F7	Crepis occidentalis	0
Nomada sp. M6	Cerastium arvense	0
Osmia albolateralis	Symphyotrichum ascendens	0
Osmia juxta	Centaurea stoebe	1
Osmia juxta	Cirsium arvense	1
Osmia juxta	Symphyotrichum ascendens	1
Osmia juxta	Tragopogon dubius	1
Osmia juxta	Collomia linearis	0
Osmia juxta	Linaria dalmatica	0
Osmia juxta	Sisymbrium loeselii	0
Osmia juxta	Solidago missouriensis	0
Osmia montana montana	Taraxacum officinale	1
Osmia montana montana	Balsamorhiza sagittata	0
Osmia pusilla	Linaria dalmatica	0
Osmia pusilla	Medicago lupulina	0
Osmia tristella	Zigadenus venenosus	0
Osmia Cephalosmia californica	Linaria dalmatica	1
Osmia Cephalosmia californica	Sisymbrium loeselii	1
Osmia Cephalosmia californica	Verbascum thapsus	1
Osmia Cephalosmia californica	Collomia linearis	0
Osmia Cephalosmia californica	Evolvulus nuttallianus	0
Osmia Cephalosmia californica	Taraxacum officinale	0
Osmia Cephalosmia californica	Tragopogon dubius	0

Osmia Hapsidosmia iridis	Astragalus miser	0
Osmia Melanosmia aff. grindeliae	Fritillaria atropurpurea	0
Osmia Melanosmia atrocyanea	Astragalus gilviflorus	0
Osmia Melanosmia brevis	Lithospermum ruderale	1
Osmia Melanosmia bucephala	Symphyotrichum laeve	0
Osmia Melanosmia densa	Anemone multifida	0
Osmia Melanosmia grindeliae	Gutierrezia sarothrae	0
Osmia Melanosmia inermis	Anemone multifida	0
Osmia Melanosmia kincaidii	Cirsium arvense	0
Osmia Melanosmia longula	Antennaria racemosa	0
Osmia Melanosmia malina	Cynoglossum officinale	0
Osmia Melanosmia nigrifrons	Oxytropis sericea	0
Osmia Melanosmia odontogaster	Gaura coccinea	0
Osmia Melanosmia pentstemonis	Gutierrezia sarothrae	0
Osmia Melanosmia phaceliae	Linum lewisii	0
Osmia Melanosmia simillima	Glycyrrhiza lepidota	0
Osmia Melanosmia trevoris	Carduus nutans	0
Panurginus torchioi	Geranium viscosissimum	0
Paragus Pandasyopthalmus haemorrhous	Cirsium vulgare	0
Paragus Pandasyopthalmus haemorrhous	Epilobium brachycarpum	0
Paravilla sp. F1	Agoseris glauca	1
Paravilla sp. F2	Helianthus annuus	0
Phyciodes pulchella	Crepis acuminata	0
Phyciodes tharos	Symphyotrichum laeve	1
Plebejus icarioides	Verbascum thapsus	1
Plebejus icarioides	Centaurea stoebe	0
Plebejus icarioides	Lupinus sericeus	0
Plebejus saepiolus	Symphyotrichum laeve	0
Scaeva pyrastri	Lactuca tatarica	0
Sphaerophoria abbreviata	Arabis nuttallii	0
Sphaerophoria abbreviata	Cerastium arvense	0
Sphaerophoria contigua	Lactuca serriol	0
Stelis aff. permaculata	Lactuca serriol	0
Stelis calliphorina	Arabis holboellii	0
Stelis callura	Brickellia eupatorioides	0
Stelis callura	Ipomopsis congesta	0
Stelis callura	Lomatium dissectum	0
Stelis foederalis	Penstemon procerus	0
Stelis montana	Cirsium arvense	1
Stelis montana	Conyza canadensis	0
Stelis monticola	Alyssum desertorum	0
Stelis permaculata	Erigeron compositus	1
Stelis permaculata	Anemone multifida	0

Stelis permaculata	Phlox hoodii	0
Stelis sp. B	Brickellia eupatorioides	0
Stelis sp. B	Ipomopsis congesta	0
Stelis sp. B	Pteryxia terebinthina	0
Systoechus oreas	Tragopogon dubius	1
Systoechus oreas	Verbascum thapsus	1
Systoechus vulgaris	Centaurea stoebe	1
Systoechus vulgaris	Sisymbrium loeselii	1
Systoechus vulgaris	Evolvulus nuttallianus	0
Systoechus vulgaris	Linaria dalmatica	0
Systoechus vulgaris	Taraxacum officinale	0
Systoechus vulgaris	Tragopogon dubius	0
Thymelicus lineola	Lesquerella ludoviciana	0
Triepeolus paenepectoralis	Geranium viscosissimum	0
Villa alternata	Sisymbrium loeselii	1
Villa alternata	Centaurea stoebe	0
Villa alternata	Linaria dalmatica	0
Villa alternata	Symphyotrichum falcatum	0
Villa fulviana	Astragalus gracilis	0
Villa fulviana	Astragalus tenellus	0
Villa fulviana	Lupinus sericeus	0
Villa lateralis	Centaurea stoebe	1
Villa lateralis	Tragopogon dubius	1
Villa lateralis	Linaria dalmatica	0
Villa lateralis	Melilotus officinalis	0
Villa lateralis	Symphyotrichum ascendens	0
Villa lateralis	Symphyotrichum falcatum	0
Villa pretiosa	Descurainia pinnata	0

Paradise Region (positive co-occurrences)

i ai auise Region (positive co-occi		
Pollinator species	Flower species	BMC
Andrena crataegi	Erigeron acris	1
Andrena prunorum	Fritillaria atropurpurea	1
Andrena prunorum	Hieracium scouleri	1
Andrena thaspii	Agoseris aurantiaca	1
Apis mellifera	Oxytropis campestris	1
Ashmeadiella pronitens	Astragalus convallarius	1
Ashmeadiella pronitens	Erigeron peregrinus	1
Bombus bifarius	Achillea millefolium	1
Bombus bifarius	Anaphalis margaritacea	1
Bombus bifarius	Antennaria neglecta	1
Bombus bifarius	Antennaria rosea	1
Bombus bifarius	Chamerion angustifolium	1

Bombus bifarius	Eurybia conspicua	1
Bombus bifarius	Hedysarum sulphurescens	1
Bombus bifarius	Lupinus argenteus	1
Bombus bifarius	Taraxacum officinale	1
Bombus bifarius	Hieracium albiflorum	0
Bombus flavifrons	Astragalus miser	1
Bombus insularis	Antennaria neglecta	1
Bombus insularis	Chamerion angustifolium	1
Bombus insularis	Eurybia conspicua	1
Bombus insularis	Taraxacum officinale	1
Bombus insularis	Achillea millefolium	0
Bombus insularis	Hedysarum sulphurescens	0
Bombus insularis	Lupinus argenteus	0
Bombus insularis	Lupinus sericeus	0
Bombus mixtus	Linnaea borealis	0
Bombus occidentalis	Eurybia conspicua	1
Bombus rufocinctus	Achillea millefolium	1
Bombus rufocinctus	Agoseris aurantiaca	1
Bombus rufocinctus	Antennaria rosea	1
Bombus rufocinctus	Eurybia conspicua	1
Bombus rufocinctus	Hedysarum sulphurescens	1
Bombus rufocinctus	Chamerion angustifolium	0
Chrysotoxum fasciatum	Calypso bulbosa	1
Colletes fulgidus	Erigeron peregrinus	1
Conophorus sackenii	Stellaria longipes	1
Eristalis Eoseristalis hirta	Aquilegia flavescens	1
Eristalis Eoseristalis hirta	Viola orbiculata	1
Heriades cressoni	Hieracium aurantiacum	1
Hoplitis albifrons argentifrons	Antennaria rosea	1
Hoplitis albifrons argentifrons	Campanula rotundifolia	1
Hoplitis albifrons argentifrons	Chamerion angustifolium	1
Hoplitis albifrons argentifrons	Eurybia conspicua	1
Hoplitis albifrons argentifrons	Hedysarum sulphurescens	1
Hoplitis albifrons argentifrons	Lupinus sericeus	0
Hylaeus modestus	Epilobium brachycarpum	1
Hylaeus modestus	Eurybia conspicua	1
Hylaeus modestus	Hedysarum sulphurescens	1
Hylaeus wootoni	Erigeron peregrinus	1
Lasioglossum Dialictus ephialtum	Maianthemum stellatum	1
Lasioglossum Dialictus sp. F17	Platanthera dilatata	1
Lasioglossum egregium	Erigeron speciosus	1
Lasioglossum Evylaeus sp. F3	Astragalus miser	1
Lasioglossum Evylaeus sp. F3	Platanthera hyperborea	1

Lycaena heteronea	Zigadenus elegans	1
Megachile frigida	Achillea millefolium	1
Megachile frigida	Chamerion angustifolium	1
Megachile frigida	Hedysarum sulphurescens	1
Megachile frigida	Lupinus sericeus	0
Megachile lapponica	Antennaria neglecta	1
Megachile lapponica	Antennaria rosea	1
Megachile lapponica	Chamerion angustifolium	1
Megachile lapponica	Crepis atribarba	1
Megachile lapponica	Eurybia conspicua	1
Megachile lapponica	Taraxacum officinale	1
Megachile melanophaea	Lupinus argenteus	1
Megachile melanophaea	Lupinus sericeus	0
Megachile relativa	Epilobium brachycarpum	1
Megachile relativa	Crepis atribarba	0
Melanostoma mellinum	Aquilegia flavescens	1
Melanostoma mellinum	Viola orbiculata	1
Osmia albolateralis	Eurybia conspicua	1
Osmia albolateralis	Hedysarum sulphurescens	1
Osmia albolateralis	Antennaria rosea	0
Osmia juxta	Calypso bulbosa	1
Osmia Melanosmia aff. paradisica	Castilleja miniata	1
Osmia Melanosmia aff. paradisica	Stellaria longipes	1
Osmia Melanosmia brevis	Tragopogon dubius	1
Osmia Melanosmia bucephala	Hedysarum sulphurescens	1
Osmia Melanosmia bucephala	Trifolium repens	1
Osmia Melanosmia bucephala	Lupinus argenteus	0
Osmia Melanosmia densa	Polygonum douglasii	1
Osmia Melanosmia nigrifrons	Pseudognaphalium canescens	1
Osmia Melanosmia pentstemonis	Agoseris aurantiaca	1
Osmia Melanosmia pentstemonis	Valeriana edulis	0
Osmia Melanosmia physariae	Fritillaria atropurpurea	1
Osmia tristella	Stellaria longipes	1
Pieris marginalis	Aquilegia flavescens	1
Plebejus icarioides	Potentilla glandulosa	1
Plebejus melissa	Astragalus miser	0
Plebejus saepiolus	Lupinus argenteus	1
Plebejus saepiolus	Platanthera hyperborea	1
Sphaerophoria nr. asymmetrica	Agoseris aurantiaca	1
Stelis montana	Solidago gigantea	1
Thymelicus lineola	Lupinus argenteus	1
Thymelicus lineola	Lupinus sericeus	1
Thymelicus lineola	Stellaria longipes	1

Pollinator species	Flower species	BMC
Bombus bifarius	Apocynum androsaemifolium	1
Bombus bifarius	Achillea millefolium	0
Bombus bifarius	Chamerion angustifolium	0
Bombus centralis	Symphyotrichum foliaceum	1
Bombus flavifrons	Lomatium dissectum	1
Bombus flavifrons	Achillea millefolium	0
Bombus flavifrons	Antennaria racemosa	0
Bombus sitkensis	Viola canadensis	1
Bombus sitkensis	Clintonia uniflora	0
Bombus vagans	Clintonia uniflora	1
Hemipenthes morioides	Antennaria racemosa	1
Hemipenthes morioides	Balsamorhiza sagittata	1
Hemipenthes morioides	Mentzelia dispersa	1
Hemipenthes morioides	Sedum lanceolatum	1
Heriades carinatus	Antennaria neglecta	1
Heriades carinatus	Trifolium pratense	1
Hylaeus Hylaeus verticalis	Allium cernuum	1
Lasioglossum Dialictus nigroviride	Achillea millefolium	0
Megachile frigida	Chamerion angustifolium	1
Melanostoma mellinum	Crepis tectorum	1
Melanostoma mellinum	Maianthemum stellatum	1
Osmia albolateralis	Hieracium scouleri	0
Osmia tristella	Antennaria racemosa	1
Osmia tristella	Erigeron glabellus	1
Osmia tristella	Eurybia conspicua	1
Osmia tristella	Mentzelia dispersa	1
Osmia tristella	Sedum lanceolatum	1
Osmia tristella	Fragaria virginiana	0
Osmia Melanosmia aff. paradisica	Collomia linearis	1
Sphaerophoria novaeangliae	Collomia linearis	1

Whitefish Region (positive co-occurrences)

Table S7. Pollinator-plant species pairs in each region that showed negative co-occurrence (segregation) based on the 95% confidence interval (CI) criterion. Species pairs that reached significance with the more restrictive Bayes mean-based criterion (BMC) are indicated in the last column. See methods for more details on the significance criteria for co-occurrence analyses.

Pollinator species	Flower species	BMC
Andrena amphibola	Balsamorhiza sagittata	0
Andrena lawrencei	Apocynum androsaemifolium	1
Andrena lawrencei	Hedysarum boreale	0
Andrena prunorum	Liatris punctata	1
Anthidium mormonum	Arenaria capillaris	1
Anthidium mormonum	Phlox albomarginata	0
Anthophora urbana	Phlox albomarginata	0
Anthophora ursina	Phlox albomarginata	1
Apis mellifera	Douglasia montana	1
Apis mellifera	Medicago sativa	1
Ashmeadiella bucconis	Arabis holboellii var. retrofracta	1
Ashmeadiella bucconis	Geum triflorum	1
Ashmeadiella bucconis	Arenaria capillaris	0
Ashmeadiella cactorum	Centaurea stoebe	0
Ashmeadiella cactorum	Heterotheca villosa	0
Ashmeadiella cactorum	Liatris punctata	0
Ashmeadiella cactorum	Linaria dalmatica	0
Ashmeadiella cactorum	Melilotus officinalis	0
Ashmeadiella cactorum	Tragopogon dubius	0
Bombus appositus	Erigeron caespitosus	0
Bombus centralis	Erigeron caespitosus	1
Bombus centralis	Sisymbrium loeselii	1
Bombus centralis	Alyssum alyssoides	0
Bombus centralis	Erysimum inconspicuum	0
Bombus centralis	Phlox hoodii	0
Bombus fervidus	Erigeron caespitosus	0
Bombus insularis	Gaillardia aristata	1
Bombus rufocinctus	Antennaria rosea	1
Ceratina nanula	Allium textile	1
Ceratina nanula	Antennaria neglecta	0
Ceratina nanula	Antennaria rosea	0
Ceratina neomexicana	Lithospermum incisum	1
Ceratina neomexicana	Erigeron caespitosus	0
Colletes fulgidus	Lithospermum ruderale	1
Colletes fulgidus	Campanula rotundifolia	0
Colletes fulgidus	Geum triflorum	0

Helena Region (negative co-occurrences)

Colletes kincaidii	Geum triflorum	1
Colletes kincaidii	Achillea millefolium	0
Colletes kincaidii	Antennaria neglecta	0
Colletes phaceliae	Geum triflorum	1
Conophorus sackenii	Liatris punctata	1
Dianthidium subparvum	Balsamorhiza sagittata	1
Dianthidium ulkei	Phlox albomarginata	1
Dufourea trochantera	Astragalus miser	1
Eupeodes volucris	Antennaria neglecta	1
Halictus confusus	Antennaria rosea	1
Halictus confusus	Arabis holboellii	1
Halictus tripartitus	Descurainia incana	1
Halictus tripartitus	Geum triflorum	1
Hemipenthes morioides	Achillea millefolium	1
Hemipenthes sinuosa	Astragalus tenellus	1
Hemipenthes sinuosa	Cirsium vulgare	1
Hemipenthes sinuosa	Allium cernuum	0
Hemipenthes sinuosa	Geum triflorum	0
Hemipenthes sinuosa	Zigadenus venenosus	0
Heriades cressoni	Potentilla hippiana	1
Hesperia colorado	Crepis tectorum	1
Hoplitis grinnelli	Erigeron caespitosus	1
Hylaeus coloradensis	Heterotheca villosa	1
Hylaeus wootoni	Astragalus alpinus	1
Hylaeus wootoni	Centaurea stoebe	1
Hylaeus wootoni	Medicago lupulina	1
Hylaeus wootoni	Penstemon eriantherus	1
Hylaeus wootoni	Symphyotrichum falcatum	1
Hylaeus wootoni	Tragopogon dubius	1
Hylaeus wootoni	Evolvulus nuttallianus	0
Hylaeus wootoni	Gaillardia aristata	0
Hylaeus wootoni	Melilotus officinalis	0
Hylaeus wootoni	Solidago missouriensis	0
Hylaeus wootoni	Taraxacum officinale	0
Hylaeus wootoni	Verbascum thapsus	0
Lapposyrphus lapponicus	Solidago missouriensis	1
Lasioglossum Dialictus aff. caducum	Tragopogon dubius	0
Lasioglossum Dialictus albipenne	Allium textile	1
Lasioglossum Dialictus ebmerellum	Achillea millefolium	0
Lasioglossum Dialictus ruidosense	Antennaria neglecta	0
Lasioglossum Dialictus semicaeruleum	Allium cernuum	1
Megachile gemula	Balsamorhiza sagittata	1
Megachile melanophaea	Symphyotrichum falcatum	0

Megachile perihirta	Phacelia linearis	1
Megachile perihirta	Phlox albomarginata	0
Megachile pugnata	Arabis holboellii var retrofracta	1
Megachile relativa	Heterotheca villosa	1
Melissodes Eumelissodes microsticta	Allium cernuum	0
Melissodes microsticta	Heterotheca villosa	1
Nomada sp. F1	Packera cana	1
Nomada sp. F1	Phacelia linearis	1
Nomada sp. F2	Heterotheca villosa	1
Osmia albolateralis	Phacelia linearis	0
Osmia Cephalosmia californica	Astragalus alpinus	1
Osmia Cephalosmia californica	Phlox albomarginata	0
Osmia Cephalosmia californica	Phlox hoodii	0
Osmia Hapsidosmia iridis	Liatris punctata	1
Osmia Helicosmia coloradensis	Antennaria neglecta	1
Osmia Helicosmia coloradensis	Phacelia linearis	0
Osmia Helicosmia coloradensis	Symphyotrichum ericoides	0
Osmia juxta	Allium textile	1
Osmia Melanosmia brevis	Antennaria neglecta	1
Osmia Melanosmia brevis	Phacelia linearis	1
Osmia Melanosmia trevoris	Erigeron caespitosus	1
Osmia montana montana	Phlox hoodii	1
Osmia montana montana	Allium cernuum	0
Osmia montana montana	Phacelia linearis	0
Osmia tristella	Gaillardia aristata	1
Osmia tristella	Heterotheca villosa	1
Osmia tristella	Symphyotrichum falcatum	1
Osmia tristella	Alyssum alyssoides	0
Panurginus atriceps	Heterotheca villosa	1
Phyciodes pulchella	Phacelia linearis	1
Plebejus icarioides	Geum triflorum	1
Plebejus melissa	Alyssum desertorum	1
Plebejus melissa	Alyssum alyssoides	0
Plebejus melissa	Gaillardia aristata	0
Plebejus melissa	Phlox albomarginata	0
Systoechus oreas	Erigeron caespitosus	0
Systoechus vulgaris	Phlox albomarginata	1
Systoechus vulgaris	Phlox hoodii	0
Thymelicus lineola	Evolvulus nuttallianus	1
Villa alternata	Arabis holboellii var. retrofracta	1
Villa alternata	Arenaria capillaris	1
Villa alternata	Hedysarum boreale	1
Villa alternata	Astragalus miser	0

Villa alternata	Campanula rotundifolia	0
Villa alternata	Geum triflorum	0
Villa lateralis	Astragalus laxmannii var robustior	1
Villa pretiosa	Fragaria virginiana	1

-

Paradise Region (negative co-occurrences)

Pollinator species	Flower species	BMC
Andrena crataegi	Hedysarum sulphurescens	1
Andrena miranda	Fragaria virginiana	0
Andrena topazana	Thalictrum occidentale	1
Bombus appositus	Linnaea borealis	1
Bombus bifarius	Actaea rubra	1
Bombus bifarius	Calypso bulbosa	1
Bombus bifarius	Osmorhiza berteroi	1
Bombus bifarius	Viola orbiculata	1
Bombus bifarius	Aquilegia flavescens	0
Bombus bifarius	Fragaria virginiana	0
Bombus bifarius	Geranium richardsonii	0
Bombus bifarius	Linnaea borealis	0
Bombus bifarius	Thalictrum occidentale	0
Bombus centralis	Crepis atribarba	1
Bombus flavifrons	Thalictrum occidentale	0
Bombus insularis	Aquilegia flavescens	1
Bombus insularis	Calypso bulbosa	1
Bombus insularis	Osmorhiza berteroi	1
Bombus insularis	Viola orbiculata	1
Bombus insularis	Fragaria virginiana	0
Bombus insularis	Thalictrum occidentale	0
Bombus mixtus	Anaphalis margaritacea	1
Bombus mixtus	Achillea millefolium	0
Bombus mixtus	Antennaria neglecta	0
Bombus mixtus	Antennaria rosea	0
Bombus mixtus	Chamerion angustifolium	0
Bombus mixtus	Eurybia conspicua	0
Bombus mixtus	Hedysarum sulphurescens	0
Bombus occidentalis	Fragaria virginiana	0
Bombus rufocinctus	Actaea rubra	1
Bombus rufocinctus	Aquilegia flavescens	1
Bombus rufocinctus	Calypso bulbosa	1
Bombus rufocinctus	Osmorhiza berteroi	1
Bombus rufocinctus	Viola orbiculata	1
Bombus rufocinctus	Fragaria virginiana	0
Bombus rufocinctus	Geranium richardsonii	0

Bombus rufocinctus	Linnaea borealis	0
Bombus rufocinctus	Thalictrum occidentale	0
Chrysotoxum fasciatum	Eurybia conspicua	1
Chrysotoxum fasciatum	Hedysarum sulphurescens	1
Eristalis Eoseristalis hirta	Eurybia conspicua	1
Eupeodes latifasciatus	Hieracium albiflorum	1
Halictus confusus	Fragaria virginiana	1
Hoplitis albifrons argentifrons	Aquilegia flavescens	1
Hoplitis albifrons argentifrons	Calypso bulbosa	1
Hoplitis albifrons argentifrons	Geranium richardsonii	1
Hoplitis albifrons argentifrons	Thalictrum occidentale	1
Hoplitis albifrons argentifrons	Viola orbiculata	1
Hoplitis albifrons argentifrons	Linnaea borealis	0
Hoplitis fulgida fulgida	Geranium richardsonii	1
Hoplitis fulgida fulgida	Linnaea borealis	1
Hoplitis fulgida fulgida	Fragaria virginiana	0
Hylaeus modestus	Fragaria virginiana	0
Lasioglossum Dialictus marinense	Castilleja miniata	1
Lasioglossum Dialictus marinense	Thalictrum occidentale	0
Lasioglossum Dialictus nigroviride	Viola orbiculata	1
Lasioglossum Dialictus nigroviride	Fragaria virginiana	0
Lasioglossum Dialictus nigroviride	Thalictrum occidentale	0
Lasioglossum Evylaeus sp. F4	Thalictrum occidentale	1
Lasioglossum Evylaeus sp. F4	Fragaria virginiana	0
Lasioglossum Evylaeus sp. F5	Antennaria racemosa	1
Megachile frigida	Aquilegia flavescens	1
Megachile frigida	Calypso bulbosa	1
Megachile frigida	Valeriana edulis	1
Megachile frigida	Viola orbiculata	1
Megachile frigida	Linnaea borealis	0
Megachile frigida	Thalictrum occidentale	0
Megachile lapponica	Aquilegia flavescens	1
Megachile lapponica	Calypso bulbosa	1
Megachile lapponica	Viola orbiculata	1
Megachile lapponica	Fragaria virginiana	0
Megachile lapponica	Geranium richardsonii	0
Megachile lapponica	Linnaea borealis	0
Megachile lapponica	Thalictrum occidentale	0
Megachile relativa	Linnaea borealis	1
Osmia juxta	Hieracium albiflorum	1
Osmia tristella	Eurybia conspicua	0
Platycheirus modestus	Hieracium albiflorum	1
Thymelicus lineola	Anaphalis margaritacea	1

Pollinator species	Flower species	BMC
Bombus bifarius	Hieracium albiflorum	1
Bombus bifarius	Clintonia uniflora	0
Bombus bifarius	Linnaea borealis	0
Bombus sitkensis	Chamerion angustifolium	1
Lasioglossum Dialictus nigroviride	Xerophyllum tenax	0
Megachile frigida	Calochortus apiculatus	0
Megachile relativa	Hieracium albiflorum	0

Whitefish Region (negative co-occurrences)