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1  | INTRODUCTION

Deadwood is a large above‐ground carbon (C) pool that influences 
how forests respond to global change (Edburg et al., 2012; Pan  
et al., 2011). After woody tissues senesce, many of the same plant 
traits that promote tree longevity resist biological decay. Few or‐
ganisms can rapidly degrade lignified secondary cell walls charac‐
teristic of woody tissues (Harmon et al., 1986; Weedon et al., 2009). 
Consequently, woody debris (WD) may have C residence times an 
order of magnitude longer than leaf litter and can remain in forests 

for years to decades (Pietsch et al., 2014). Due to slow decompo‐
sition, WD can delay C emissions following major forest distur‐
bances (Edburg et al., 2012). For example, after a beetle outbreak 
decimated living trees, a western North American forest temporarily 
emitted less C because soil respiration fell more than the increase in 
deadwood respiration (Moore et al., 2013). However, in this forest 
and others affected by dieback, eventual carbon efflux from dead‐
wood may exceed primary productivity, flipping the forests from C 
sinks to sources. Deadwood also influences other nutrient cycles, 
for instance as a temporary sink for N, with related impacts on 
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Abstract
Whether global change will drive changing forests from net carbon (C) sinks to 
sources relates to how quickly deadwood decomposes. Because complete wood 
mineralization takes years, most experiments focus on how traits, environments and 
decomposer communities interact as wood decay begins. Few experiments last long 
enough to test whether drivers change with decay rates through time, with unknown 
consequences for scaling short‐term results up to long‐term forest ecosystem pro‐
jections. Using a 7 year experiment that captured complete mineralization among 21 
temperate tree species, we demonstrate that trait effects fade with advancing decay. 
However, wood density and vessel diameter, which may influence permeability, con‐
trol how decay rates change through time. Denser wood loses mass more slowly 
at first but more quickly with advancing decay, which resolves ambiguity about the 
after‐life consequences of this key plant functional trait by demonstrating that its 
effect on decay depends on experiment duration and sampling frequency. Only long‐
term data and a time‐varying model yielded accurate predictions of both mass loss in 
a concurrent experiment and naturally recruited deadwood structure in a 32‐year‐old 
forest plot. Given the importance of forests in the carbon cycle, and the pivotal role 
for wood decay, accurate ecosystem projections are critical and they require experi‐
ments that go beyond enumerating potential mechanisms by identifying the temporal 
scale for their effects.
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productivity and C uptake (Zimmerman et al., 1995). Since forests 
play such a major role in the terrestrial C cycle, predicting how car‐
bon balance will respond to changing disturbance regimes requires 
identifying the factors that influence the full temporal trajectory of 
wood decay from senescence to complete mineralization.

Variation in wood decay rates reflects the combined influences 
of intrinsic and extrinsic drivers (Cornwell et al., 2009; Zanne et al., 
2015). Wider stems from species with denser, more nutrient‐limited 
wood tend to decompose more slowly (Hu et al., 2018; Weedon  
et al., 2009). Decay rates also depend on features of the surrounding 
environment, such that higher soil nutrient availability, temperature, 
and moisture tend to accelerate decay (Fravolini et al., 2016; Gora, 
Sayer, Turner, & Tanner, 2018). Ultimately, decay rates reflect activ‐
ity of decomposing organisms, including fungi, bacteria, archaea, and 
animals, which interact with changing substrates, external environ‐
ments, and one another (Van Der Wal, Ottosson, & De Boer, 2015).

Despite a growing list of candidate wood decay drivers, scaling 
up from experimental results to accurate forest ecosystem projec‐
tions has proven considerably more challenging for several reasons. 
First, different mechanisms that drive decay can interact in complex 
ways. For example, in experimental wood decay microcosms, the ef‐
fect of temperature depended on both fungus identity and substrate 
quality (Venugopal, Junninen, Edman, & Kouki, 2017). A second major 
challenge is identifying the spatial scale where important drivers and 
interactions emerge. Many experiments ignore environmental vari‐
ability over small spatial scales, which can distort the relative explan‐
atory power of, for instance, microclimate versus edaphic conditions 
(Bradford et al., 2014). Careful experiments and hierarchical models 
are beginning to resolve where certain drivers control decay (Bradford 
et al., 2017). However, a third remaining major challenge is to identify 
when these processes are most relevant. Scaling from short‐term ex‐
periments to long‐term processes requires extrapolating beyond the 
temporal domain of the data. Consequently, drivers that appear to be 
important when decay begins may have effects that ultimately change 
in magnitude or direction by the time most mass loss has occurred.

To illustrate how experimental timescale influences forest C pro‐
jections, consider an experiment designed to test how variation in a 
tree functional trait drives deadwood residence times (Figure 1). In 
this example, the trait value controls how decay rates change com‐
pared to the negative exponential, or NegExp, decay model (central 
grey curve). The NegExp model assumes constant proportional mass 
loss as controlled by a single parameter. Because this model is ap‐
plicable to experiments designed to sample mass loss only once, it 
is a common choice for representing decomposition despite known 
limitations for representing dynamic decay processes (Adair, Hobbie, 
& Hobbie, 2010). As the example demonstrates, sampling once and 
assuming NegExp decay can distort the relationship between trait 
values and decay. Because samples from the species with high trait 
values have lost relatively less mass at first, but more mass later on, 
the apparent relationship between trait values and residence time 
depends on experiment duration. Long‐term decay data produce a 
trait effect in the correct direction but of reduced magnitude, inter‐
mediate‐term data show no significant relationship, and short‐term 

data incorrectly imply that the trait strongly increases residence 
times. Any of these distorted relationships would lead to inaccurate 
representations of forest processes as an artefact of experimental 
timescale and associated misspecification of the underlying decay 
model. How long a decay experiment lasts and how frequently sam‐
ples are collected may control what traits appear to be important, 
the directions of their effects, and associated projections of dead‐
wood dynamics.

Here we tested how decay experiment duration and sampling 
frequency influenced the strength of candidate plant trait and envi‐
ronmental drivers, their roles in different functional forms for decay 
and the consequences for accurately predicting mass loss and dead‐
wood structure. We integrated data from three complementary stud‐
ies: a common‐garden wood decay experiment involving 21 woody 
species decomposing for up to 7 years in two contrasting habitats, 
a concurrent experiment for validating mass loss projections, and 

F I G U R E  1   Hypothetical example illustrating how experimental 
timescale influences deadwood residence time estimates. Points 
represent mass loss from replicates of two tree species, one with 
high values of an important functional trait (light grey) and another 
with low values (dark grey). The generating function (lower left 
inset) is a hierarchical Weibull model (Equations 1 and 3) where 
the trait has a positive log‐linear correlation with the value of the 
shape parameter (i.e. c Equation 1). The mass loss curves for both 
species intersect at time equal to the reciprocal of their common 
scale parameter (i.e. λ Equation 1). The curve from the associated 
NegExp model is illustrated in medium grey. Inset panels represent 
the inferred relationships between residence time and trait values 
at different sampling times (dashed vertical lines) [Colour figure can 
be viewed at wileyonlinelibrary.com]
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a WD inventory of naturally recruited deadwood in a 32‐year‐old 
forest dynamics plot at the same site. For the decay experiment in‐
volving all 21 species, we analysed mass loss using a new hierarchi‐
cal Bayesian approach that interpolated between the widely used 
NegExp model and a time‐varying Weibull model (Feng & Li, 2001). 
We evaluated the strength for 23 candidate drivers, including tree 
species wood chemistry and anatomy, as well as plot edaphic and 
microclimatic variables using different sampling schemes to test 
two specific hypotheses. First, because decay changes the wood 
substrate itself, we predicted that significant drivers would change 
with the duration and sampling frequency of experiment. Second, 
we predicted that long‐term data analysed using a flexible time‐ 
varying model would more accurately project both mass loss and 
natural WD structure than models based on short‐term data, single 
sampling points, or NegExp models.

2  | MATIERALS AND METHODS

2.1 | Site description

The experiments and WD inventory occurred at the Tyson Research 
Center, USA, at the northeastern edge of the Ozark ecoregion 
(38°31′N, 90°33′W) with a mean annual temperature of 13.5°C 
and mean annual precipitation of 957 mm. Local topography varies 
across highly eroded limestone bedrock with distinct ridge top and 
valley bottom habitats that differ in soil chemistry and plant com‐
munities (Spasojevic, Turner, & Myers, 2016; Spasojevic, Yablon, 
Oberle, & Myers, 2014).

2.2 | Wood decay experiment

Eight common‐garden ‘rot‐plots’ were situated in the adjacent 
ridge top and valley bottom sites in four watersheds. For each plot, 
we harvested tissue from 21 species widely spread across seed 
plant families, representing different growth forms (Table S1). We 
processed healthy stems into replicates approximately 22 cm in 
length and 5–9 cm in midpoint diameter with an average value of 
6.93 ± 0.04 (SE) cm. Using a relatively narrow diameter allowed us 
to include wood from shrubs and lianas that seldom reach the typi‐
cal size threshold for coarse WD, that is 10 cm in diameter (Harmon 
et al., 1986). For every replicate, we measured initial wet mass. We 
then estimated initial dry mass from the dry mass to wet mass ratio 
(DMWMR) of additional segments that we collected from each har‐
vested stem and dried to constant mass at 103°C (Zanne et al., 2015). 
The first cohort was deployed in 2009 and included wood from 16 
species. The second cohort was deployed in 2011 and included seg‐
ments from five new species, as well as the validation experiment 
consisting of replicated segments from three species that were also 
included in the first cohort (Table S1).

We harvested replicates on four occasions. In 2010, 2012, and 
2014, we harvested one replicate per species per rot plot per co‐
hort using the protocol described in Zanne et al. (2015). Briefly, we 
randomly selected replicates in a given year and collected all wood 

or bark residue except fragments small enough to pass through a 
0.5 cm2 mesh. We carefully removed adhered soil, insects, and fruit‐
ing bodies and measured the final wet mass for each sample. We sur‐
face sterilized logs, allowed the sterilizing solution to evaporate, and 
used a sterilized drill bit to collect approximately 1 g of sawdust from 
both the top and the bottom of logs for other analyses. Following 
sawdust collection, we reweighed the wet mass of the drilled log and 
dried them at 103°C for 48 hr. We estimated the dry mass at harvest 
as the product of the final wet mass and the measured DMWMR of 
the drilled sample.

In 2014, a laboratory accident damaged samples after weighing 
final wet mass and collecting sawdust subsamples but before drying 
the drilled logs. For these samples, we calculated moisture content 
using a multiple imputation approach (See Moisture content impu‐
tation). At the end of the harvest in 2014, decay had progressed so 
far among certain species and sites that we anticipated complete 
mineralization prior to the final planned harvest. We collected those 
samples using the same general protocol but directly measured dry 
mass. Specifically, we collected samples using the same field proto‐
col including screening through the 0.5 cm2 mesh, removing insects, 
fruiting bodies, and adhered soil. We then dried samples at 103°C 
for 48 hr to directly measure final dry mass. We harvested and di‐
rectly measured dry mass for every remaining replicate during the 
final harvest in 2016.

2.3 | Moisture content imputation

As described above, a laboratory accident during the 2014 harvest 
damaged 108 samples after measuring wet mass and collecting 
sawdust subsamples but before measuring the drilled log dry mass. 
To estimate the log DMWMR, we measured the DMWMR of 493 
sawdust subsamples representing all 256 logs from the harvest. 
Specifically, we weighed the wet mass of the sawdust, dried them to 
103°C and reweighed them to a precision of 0.1 mg. In cases where 
more than one independent sawdust subsample was collected, we 
took the mean DMWMR of every subsample taken from the same 
log. We estimated the drilled log DMWMR for the damaged sub‐
samples by regressing the measured log DMWMR onto the sawdust 
DMWMR. To better meet the assumptions of the regression, we 
logit transformed both the predictor (sawdust) and response (log) 
DMWMRs. Measured log DMWMRs were highly correlated with 
sawdust DMWMRs (r = .85, Figure S1). We then imputed the missing 
log DMWMR values while estimating the regression parameters in 
a Bayesian context with vague priors (i.e. Normal (0,1,000)) on the 
intercept and slope coefficients using Markov–Chain Monte Carlo 
(MCMC) sampling as implemented in rjags 4.6 (Plummer, 2016) in R 
v 3.1.1 (R Core Team, 2017). After discarding the first 1,000 samples 
as burn‐in, we drew 2,000 samples from the posterior distribution 
from three independent MCMC chains representing both regression 
coefficients and, at each iteration, calculated the missing value of 
DMWMR for damaged log samples. We checked for convergence 
by visually inspecting the trace plots and ensuring that the Brooks–
Gelman–Rubin (Brooks & Gelman, 1998) statistic was <1.03. We 
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substituted the mean of the imputed DMWMR when calculating 
mass loss for those samples. For all other samples from this harvest, 
we used the directly measured DMWMR of the drilled logs.

2.4 | Candidate drivers

To represent intrinsic drivers of decay, we analysed the initial wood 
chemical and anatomical traits. For wood chemistry, we analysed 
the natural log of the C:N ratio, carbon fractions (i.e. Cellulose%, 
Hemicellulose%, and log(Lignin%)) and concentrations of elements 
associated with wood decay enzymes (i.e. Ca, log(P), and Mn; Zanne 
et al., 2015). Anatomical traits were wood density, conduit lumen 
diameter (Zanne et al., 2015), and conduit length (Oberle, Ogle, 
Zuluaga, Sweeney, & Zanne, 2016). We also measured the fraction of 
cross‐sectional area represented by parenchyma and conduit walls 
based on microscopic analysis of radial sectors of fixed, stained cross 
sections from three branches per species following the same meth‐
odology as (Osazuwa‐Peters, Wright, & Zanne, 2017).

To represent extrinsic drivers of decay, we analysed the micro‐
climate and soils. We measured air temperature and relative hu‐
midity at 1 m above the soil surface, as well as soil temperature and 
moisture content at 10 cm below the surface every 10 min from 
June 2011 to June 2014 using Hobo weather stations (Zanne et al., 
2015). Because some sensors failed during this interval, we quan‐
tified plot‐level microclimatic variation as the mean deviation from 
simultaneous measurements at a reference station that collected 
data for all four variables throughout the entire measurement pe‐
riod. For soil chemistry, we collected 8 cores from a depth of 1 to 
10 cm within the original footprint of the rot plot in July 2012 and 
measured N content, soil pH, Total Exchangeable Bases, Bray P, Ca, 
and Mn using standard methods (Spasojevic et al., 2016; Spasojevic 
et al., 2014). Finally, we used a smoothed digital elevation model 
to calculate the topographic moisture index at every site (Oberle 
et al., 2015).

2.5 | WD inventory

We characterized WD structure based on a 2012 deadwood inven‐
tory in a 4 ha section of the 20 ha Tyson Research Center Forest 
Dynamics plot (Spasojevic et al., 2014). This portion of the plot was 
established in 1981. Every stem >2 cm diameter at 1.4 m height 
was tagged, identified, measured, and mapped. In 1989, mortality 
was noted and new recruits were added. Between 2010 and 2012, 
the plot was resurveyed and expanded using standard techniques 
(Anderson‐Teixeira, Davies, Bennett, Muller‐Landau, & Wright, 
2014).

The 2012 deadwood inventory analysed here included several 
measurements of tagged deadwood within the original 4 ha forest 
dynamics plot (Oberle et al., 2015). Briefly, we classified vertical po‐
sition of WD as either ‘standing’ or ‘down’ depending on whether it 
was suspended unsupported above 2 m height or had broken and 
fallen to the ground respectively. Depending on vertical position, 
we measured deadwood dimensions in different ways. For standing 

deadwood, we measured diameter above the root collar and at 1.4 m 
above the ground using a diameter tape. For down deadwood we 
measured the horizontal diameter at the base of the log at the most 
distal point that was at least 7 cm wide using timber calipers. For 
comparison with the decay experiment, we only analysed WD wider 
than 7 cm diameter at its widest end. In addition to measuring dead‐
wood dimensions, we identified decay class (DC), using a standard 
classification system based on a progressive series of external in‐
dicators (Harmon, Fasth, Woodall, & Sexton, 2013; Oberle et al., 
2015). DC1 still has attached twigs, DC2 has no twigs but retains 
most of its bark, DC3 has lost most of its bark but has an intact bole, 
DC4 has developed large holes, and DC5 cannot maintain its original 
shape.

To estimate the values of environmental covariates at the lo‐
cations of deadwood, we conducted spatial analyses of variation 
in soil‐surface temperature. Specifically, we used a dataset of soil‐
surface temperatures generated by 199 shielded iButton (Maxim 
Integrated) temperature loggers systematically distributed across 
the site (Spasojevic et al., 2016). Loggers measured temperatures at 
2 hr intervals from July 11, 2013 to July 11, 2014. Because meth‐
ods differed from the common‐garden plots, we z‐transformed the 
iButton data and rescaled them to have the same mean and stan‐
dard deviation as air temperatures recorded over the same interval 
by the reference weather station for the common‐garden plots. 
We fit an exponential variogram to the mean temperature‐distance 
relationship and kriged the fitted variogram to a set of points in a 
5 × 5 m square grid over the WD survey area using the R package ‘sp’ 
(Pebesma & Bivand, 2005).

Besides features of deadwood that we directly measured in the 
2012 survey, we determined tree species identity using retained 
tags from prior living tree surveys. Among 434 tagged pieces of 
WD > 7 cm in diameter, 261 matched 12 species from the decay 
experiment. To assess whether the tagged deadwood pool that we 
included in the inventory was representative of potential dead‐
wood recruits, we made two comparisons. First, we compared the 
distribution of residence times estimated from the best‐fit decay 
model (see Model implementation, simplification, and adequacy) 
to the distribution of residence times for the same set of species 
in the living tree pool in the 2010–2012 survey of the 4 ha plot. 
Second, we compared the tagged deadwood residence time distri‐
bution to the distribution of residence times estimated for stems 
that had been recorded as alive in 1989 but were not recorded 
as tagged living stems during the 2010–2012 inventory. Because 
drought‐related defoliation made Amelanchier arborea difficult to 
identify as dead during the inventory and because it appeared as 
anomalously overrepresented in the deadwood survey, we ex‐
cluded this species from all analyses of deadwood structure. We 
tested whether estimated residence times differed between the 
set of tagged stems recovered in the deadwood inventory and the 
pool of stems missing from the 1989 inventory using logistic re‐
gression, with inventory as a binary response and estimated res‐
idence time as the predictor using the function ‘glm’ in r package 
‘stats’ (R Core Team, 2017).
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2.6 | Model structure

To represent decay in the experiment, we assumed that the propor‐
tion of mass remaining (M) for every replicate i = 1 … l with increasing 
time, t, since deployment for j = 1… n species and k = 1… m plots is 
defined by the Weibull function (Feng & Li, 2001):

where λ is the scale parameter and c is the shape parameter. If the 
value of the shape parameter is >1, mass loss accelerates through 
time, which reduces residence times relative to the NegExp decay. 
If the value of the shape parameter is <1, mass loss decelerates 
through time, which increases residence times. Fixing the shape pa‐
rameter at 1 yields the NegExp model.

To estimate the parameters of the Weibull function from ob‐
served data, we employed a generalized Weibull regression ap‐
proach using a double log link function and normally distributed 
measurement‐level error on the transformed scale (Oberle et al., 
2016). Under this approach, the parameters of the Weibull decay 
function, λjk, cjk, may vary with intrinsic features of wood and extrin‐
sic features of the environment. Specifically, we treated λjk and cjk 
as stochastic variables that depend in turn on hyperparameters in a 
multilevel regression framework:

where αλ is the intercept for the scale parameter, W is a l × n matrix of 
species‐level trait covariates and g� is a vector of n species trait effects, 
X is a l × m matrix of plot‐level environmental covariates and h� is a vec‐
tor of m environment effects, and τλ is the precision (inverse variance) 
for the scale parameter. An equivalent expression applies to a multilevel 
regression for the shape parameter, cjk. The log‐normal likelihood re‐
flects the constraint that both λjk and cjk must be positive. For NegExp 
decay, we fixed c to one and used the canonical log‐link function with 
normally distributed measurement‐level error (Oberle et al., 2016).

To determine which drivers predict variation in decay param‐
eters we used a latent binary indicator variable approach (O’Hara 
& Sillanpää, 2009). Specifically, each element in the vector of n + m 
multilevel regression coefficients (i.e. g� and h� in Equation 2) is rep‐
resented as the product of a binary indicator variable, I�,j,k, and a la‐
tent regression coefficient, ��,j,k

When an indicator variable takes a value of 1, the corresponding co‐
variate is included in the model. The probability that an indicator takes 
a value of 1 is treated as stochastic:

where p� is the probability of covariate inclusion as estimated by the 
data.

2.7 | Model implementation, simplification, and  
adequacy

We fit the decay model (Equations 1–5) in a Bayesian context using 
rjags v 4.6 using vague priors with broad distributions. For the resid‐
ual measurement‐level errors, we placed a broad uniform (0,10) prior 
on the residual standard deviation. We used the same prior for the 
error standard deviation in the lognormal hyperparameter regres‐
sions for the effects of species traits and environmental covariates 
(i.e. the square root of the reciprocal of �� Equation 3). For the inter‐
cepts of the hyperparameter regressions (i.e. �� Equation 3), we used 
vague Normal (0,100) priors. As priors for the latent hyperparameter 
regression coefficients (i.e. ��,j,k Equation 4), we used vague Normal 
(0,100) priors. Finally, for the prior on the proportion of important 
covariates, (i.e. p� Equation 5) we used a vague Beta (0.5,0.5) distri‐
bution which is symmetric around a minimum of 0.5.

We sampled from the posterior distributions using three inde‐
pendent MCMC chains with an adaptive burn‐in phase of 104 itera‐
tions followed by 5 × 106 iterations, saving only every 50th sample. 
After quantifying the effective sample size, we extended chains, 
added additional chains, or adjusted the thinning interval until effec‐
tive sample size numbers for all sampled quantities exceeded 1,000. 
We checked for convergence by visually inspecting the trace plots 
for the parameters and ensuring that the Brooks–Gelman–Rubin sta‐
tistic was <1.03.

Simultaneously estimating multilevel regressions for Weibull 
shape and scale parameters using the same candidate predictors 
complicated sampling. To speed convergence for the full Weibull 
hyperparameter regression (Equations 1, 3–5), we sampled from a 
model with a simple normal (0,100) prior on the intercept for the 
scale parameter (e.g. �� Equation 3) while estimating the full param‐
eter effects for the shape parameter and vice versa. After running 
consecutive, complementary models with hyperparameter regres‐
sions for shape and then scale parameters respectively, we included 
all covariates with 95% CI intervals that excluded 0 in our simplified 
models.

Following model simplification, we assessed the adequacy of alter‐
native model specifications for different datasets. After analysing the 
full model, we reduced the set of predictors to those with 95% CIs that 
excluded 0 during simplification and substituted the binary latent in‐
dicator variable structure (i.e. Equation 4) for independent, vague nor‐
mal (0,100) priors over each hyperparameter in the reduced vector of 
coefficients. We fit the models using the same approach described in 
model simplification but reduced the initial sampling phase to 5 × 105 
iterations and the thinning interval to 10. After checking convergence, 
we drew an additional 2 × 105 samples for estimating the deviance 
information criterion (DIC, Spiegelhalter, Best, Carlin, & Van Der Linde, 
2002). DIC is an analog for the more widely used Akaike information 
criterion (AIC, Akaike, 1973) that accommodates multilevel models 
where the number of parameters is estimated from the data. We se‐
lected the model with the lowest DIC as the most adequate model and 
report the mean of the posterior distribution and the limits of the 95% 

(1)M(t)ijk=1−e−(�jkti)
cjk

,

(2)M(t)ijk=1−e−(�jkti).

(3)�jk∼LogNormal
(

��+Wg�+Xh�, ��
)

,

(4)g�,j,k= I�,j,k��,j,k.

(5)I�,j,k∼Bernoulli
(

p�
)

,
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CI for parameters of interest. For datasets including only the first or 
the fifth year of mass loss data, the Weibull model is not identifiable. 
For these subsets of the data, we compared the NegExp decay models.

To compare the predictive accuracy of different models against 
the validation dataset, we used two criteria. First, we re‐expressed 
Equation (3) as

where the final term is the standard variance correction factor for 
lognormal regression. We used an equivalent expression for cal‐
culating the expected value of the shape parameter for Weibull 
decay. We substituted the expected parameter values into the ex‐
pression for mass loss (Equations 1 or 2). From these, we calculated 
the root mean square deviation (RMSD), which decreases with 
increasing accuracy (Piñeiro, Perelman, Guerschman, & Paruelo, 
2008). Secondly, we quantified accuracy by regressing observed 
mass loss onto predicted mass loss and tested the null hypotheses 
that unbiased predictions have an intercept of zero and a slope of 
one using ordinary least squares regression using function “lm” in 
R package “stats”.

Because deadwood in the survey had naturally recruited at an 
unknown time, we calculated residence times for each piece of 
deadwood using trait and environmental covariates for different 
models. Under the Weibull decay function, the residence time E (t)jk 
is given by:

where Γ is the gamma function (Feng & Li, 2001). Under NegExp 
decay, this expression simplifies to the reciprocal of �jk. We evaluated 
the effect of residence time on WD vertical position with standard 
logistic regressions with a two‐sided hypothesis test as estimated 
using function ‘glm’ in R package ‘stats’ (R Core Team, 2017). We 
evaluated whether estimated residence times predict variation in 
WD DC as a proportional odds logistic regression with a two‐sided 
hypothesis test using the ‘polr’ function in R package ‘MASS’ (Ripley, 
Venables, Bates, Hornik, & Firth, 2015). We compared models based 
on AIC with the goal of assessing whether the time varying model 
provided a more adequate prediction of naturally recruited dead‐
wood structure than alternative models informed by fewer sampling 
points or the NegExp model.

2.8 | Parameter interpretation

To represent the relative importance of parameters in simplified mod‐
els, we used three approaches. First, we calculated standardized ef‐
fect sizes by dividing the magnitude of the regression coefficients by 
the standard deviation of the associated covariates. Because the re‐
sponse variables represent decay function parameters, which can be 
difficult to interpret with respect to mass loss, we also calculated av‐
erage predictive comparisons (Oberle, Ogle, Zanne, & Woodall, 2018). 

This second approach compares the difference (Δ) in the response of 
interest (y) with a specified change (�) in a predictor variable of inter‐
est (x) as:

where � represents the vector of other parameters Xr represents a 
matrix of residual covariates held at their means. Here the response 
of interest is the residence time estimated by the generalized regres‐
sion (i.e. Equations (6) and (7). To represent uncertainty in average 
predictive comparisons, we estimated the 95% CI for each compari‐
son based on 1,000 samples from the posterior distributions for the 
associated parameters (i.e. Equation 3).

Finally, we calculated the marginal effects of significant predictor 
effects for simplified models for all subsets of the data. For each sig‐
nificant predictor and simplified model, we randomly sampled 150 
sets of parameter estimates from the converged MCMC chains. We 
substituted the parameter estimates into the generalized regression 
equation (i.e. Equations 6 and 7) to calculate the expected residence 
time for marginal differences in each predictor with all others held 
constant at their means. This approach illustrates the magnitude, di‐
rection, and uncertainty in the effect of each predictor on residence 
times.

3  | RESULTS

3.1 | Wood decay experiment

Experimental duration (i.e. 1e vs. 5 years of mass loss) and sampling 
frequency (i.e. once vs. three to four times) strongly influenced which 
candidate drivers influenced decay, the strength of their effects, and 
how they influenced the shape of the decay function. The common 
garden experiment involved 630 unique replicates and captured 
nearly complete mass loss for all species and sites. When the final 
replicates were harvested 5.7 years (±0.01 SE) after deployment, 
samples had lost 72.9% (±1.58 SE) of their initial mass. Among the 12 
wood trait and 11 environmental candidate drivers (Figure 2; Table S2),  
the portions that was important for decay (i.e. p� in Equation 5) 
was highest when analysing only the first year of mass loss (year 
1 NegExp, p� = 0.421, 95% CI = [0.225, 0.633]) and lowest when 
analysing only the fifth year of mass loss (year 5 NegExp, p� = 0.284, 
95% CI = [0.091, 0.511]). After just 1 year, wood carbon fractions, 
branch density, and the proportion of parenchyma were associated 
with significantly slower decay rates while wood phosphorous was 
associated with significantly faster decay rates (Figure 2). Only log 
(lignin%) remained important after 5 years (Figure 2).

Analysing every sampling point in the time series identified many 
of the same predictors, but supported different effect magnitudes 
and functional relationships. Assuming NegExp decay, the propor‐
tion and identity of important predictors resembled those estimated 
after only 1 year (year 1–7 NegExp, p� = 0.410, 95% CI = [0.216, 
0.622]). However, wood hemicellulose was not significant, while 
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plot soil temperature slightly slowed decay (Figure 2). Compared 
to NegExp decay, a simplified Weibull decay model was much 
more adequate (year 1–7 NegExp DIC = −949.4; year 1–7 Weibull 
DIC = −990.4). Many of the same candidate decay drivers were as‐
sociated with variation in the scale parameter of the Weibull dis‐
tribution, which is functionally related to the scale parameter of 
the NegExp model. However, both initial wood density and xylem 
conduit diameter predicted variation in the Weibull shape parameter 
which controls how decay rates change through time. Wood density 
was associated with slow initial decay that accelerated relative to 
constant proportional mass while xylem conduit diameter had the 
opposite effect.

Differences in the direction and magnitudes of predictor effects 
between different sampling schemes translated to very different 
projections for deadwood residence times. Wood density exhibited a 
timescale dependent effect that changed from accelerating to slow‐
ing decay depending on the duration and model (Figure 2). Analysing 
the whole time series using the time‐varying Weibull model resulted 
in denser wood having shorter residence times, while NegExp mod‐
els implied that this trait had the opposite effect, with denser wood 
resulting in longer residence times. Differences in effect magnitudes 
for other wood traits translated to dramatically different projections 
of ecosystem dynamics (Figure 3). Lignin was the only trait that sig‐
nificantly influenced mass loss for every temporal sampling scheme 
and model. Based on the first year of decay, a species with modestly 

more lignin (5%) had projected residence times more than an order 
of magnitude longer, while estimating the impact of the same trait 
difference after 5 years projected to an increase in residence times 
by only a factor of four. Short‐term data also yielded much more 
uncertain projections for the effect of increased lignin content on 
deadwood residence times.

F I G U R E  2   Tree species trait and environment predictors of wood decay vary with experimental timescale and decay function. The 
effects of each predictor on estimated residence times were estimated from the generalized regression (Equations 6 and 7) as marginal 
effects with other predictors held constant at their means. Curve overlays illustrate uncertainty using 150 sets of relevant parameters drawn 
from converged Markov–Chain Monte Carlo chains. Empty cells correspond to coefficients that had 95% credible intervals including 0 for a 
given temporal sampling scheme and functional form of decay
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3.2 | Validation experiment

For 72 additional replicates representing a subset of three spe‐
cies decaying at the same sites over 5 years, long‐term data 
generated more accurate predictions of observed mass loss. 
Original and validation mass loss values for the same species, 
plots, and durations were weakly correlated (R2 = .366) and 
were lower during the validation experiment. Model‐based pro‐
jections performed better but varied in accuracy depending on 
experimental timescale (Figure 4). A model parameterized by 
just the first year of decay data resulted in the least accurate 
predictions (RMSD = 0.217), although the overall relationship 
was unbiased (validation linear regression, R2 = .498; intercept 
t [H0 = 0] = −1.324, p = .19; slope t [H0 = 1] = −0.785, p = .218). 
In comparison, a model parameterized with just the fifth year of 
decay data was more accurate (RMSD = 0.174), but marginally bi‐
ased towards lower mass loss values (validation linear regression, 
R2 = .689; intercept = −0.077, df = 2, t [H0 = 0] = −1.988, p = .051; 
slope t [H0 = 1] = −0.560, p = .289). Models parameterized using 
all of the decay data produced the most accurate predictions (year 
1–7 NegExp RMSD = 0.161, year 1–7 Weibull RMSD = 0.163) and 
neither exhibited bias (year 1–7 NegExp, validation linear regres‐
sion, R2 = .664; intercept t [H0 = 0] = −0.732, p = .467; slope t 
[H0 = 1] = −0.845, p = .200; year 1–7 Weibull, validation linear 
regression, R2 = .666; intercept t [H0 = 0] = −0.540, p = .591; slope 
t [H0 = 1] = −1.269, p = .104.

3.3 | WD inventory

Across a 4 ha, 32‐year‐old forest dynamics plot at the same site, 
estimates of residence time based on the full time series and 
Weibull decay accurately predicted naturally recruited dead‐
wood structure. At the time of inventory, 261 tagged dead stems 
matched species from the decay experiment. Of these, 98 were 
standing unsupported above 2 m and intermediate DC were most 
common (DC 1 = 51, DC 2 = 73, DC 3 = 106, DC 4 = 24, DC 5 = 7). 
The ratio of standing to down deadwood among tagged stems 
was about 50% higher than the ratio of all standing to down dead‐
wood among all stems greater than 7 cm in the inventory. Similarly, 
the average DC among tagged dead stems was 2.48 ± 0.06 (SE), 
which was slightly lower than the average DC among all stems 
greater than 7 cm diameter at the base (3.08 ± 0.03 SE). While 
the tagged dead stems tended to be relatively intact compared to 
deadwood overall, the distribution of residence time estimates in 
the deadwood pool was similar to that of living trees (Figure S2).  
Furthermore, estimated residence time was not a significant pre‐
dictor for whether or a piece of deadwood was recovered with 
a tag from the pool of potential recruits that had gone missing 
from the plot since the previous inventory (Logistic Regression, 
n = 1,410, Weibull Residence effect, p = .1).

The most adequate model for deadwood position among naturally 
recruited tagged deadwood included both stem diameter and hierarchi‐
cal Weibull residence times (Table S2). Controlling for the effect of stem 

F I G U R E  4   Timescale and decay function influence the accuracy of 
mass loss projections in a validation experiment. Species codes reflect 
the first two characters of the genus and species names (Table S1) and 
position denotes samples from plots on ridges (H) versus valleys  
(L) [Colour figure can be viewed at wileyonlinelibrary.com]
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diameter, WD from species and environments with longer projected res‐
idence times were marginally more likely to occur as standing (Figure S3,  
Logistic Regression, n = 261, diameter effect = 0.051, z = 3.56, p < .001, 
residence time effect = 0.397, z = 1.92, p = .055). Similarly, wider WD 
was more likely to occur in less advanced DCs, as was WD with lon‐
ger projected residence times (Table S3; Figure 5, Proportional Odds 
Logistic Regression, n = 261, diameter effect = −0.0295, t = −2.306, 
p = .009, residence time effect = −0.393, t = −2.20, p = .012).

4  | DISCUSSION

As climate change stresses trees, forest carbon balance hinges on how 
quickly deadwood decomposes. Initial wood decay rates vary widely 
among tree species and sites, with short‐term experiments emphasiz‐
ing different roles for intrinsic and extrinsic drivers that can depend 
on spatial scale (Bradford et al., 2014; Weedon et al., 2009; Zanne 
et al., 2015). However, scaling from experiments to ecosystems also 
requires testing whether mechanisms that prevail when wood decay 
begins have the same influence as wood gradually mineralizes. Our re‐
sults demonstrate how experimental timescale can distort mechanistic 
representations of decay in widely used empirical models with major 
consequences for projecting forest responses to disturbance.

4.1 | Trait effects depend on temporal scale

Consistent with our first hypothesis, based on the gradual changes in 
woody substrates during decay, the effects of trait and environmen‐
tal drivers changed with timescale. As experiment duration increased, 
driver effects weakened and produced radically different relationships 
between traits and residence times. Fading effects of species traits 
has also been observed during long‐term leaf litter decay (Moore, 
Trofymow, Prescott, & Titus, 2017). In a year‐long experiment that 
captured complete mineralization of Mediterranean leaf litters, dif‐
ferences in intact leaf polyphenol content strongly influenced initial 
mineralization rates, but effect sizes decreased with increasing mass 
loss (García‐Palacios, Shaw, Wall, & Hättenschwiler, 2016). Initial trait 
effects, like the traits themselves, may become less distinct as decom‐
posers homogenize senesced plant tissues (Witkamp, 1966). While 
certain litter traits may have legacy or indirect effects mediated by 
distinct patterns of decomposer community assembly (Fukami et al., 
2010), experiments that examine only the initial stage of wood decay 
may exaggerate trait effects that prevail early on but diminish with 
advancing decay.

Not only did timescale change the effects of drivers, it also 
changed their functional roles. Initial wood density provides an 
important example. Wood density is a key plant functional trait 
with an ambiguous effect on decay (Pietsch et al., 2014). A recent 
global meta‐analysis found that denser wood decayed more quickly 
(Hu et al., 2018) in contrast to specific experiments that have ei‐
ther demonstrated slower decay for denser wood (Hérault et al., 
2010) or no wood density effect (Freschet, Weedon, Aerts, van 
Hal, & Cornelissen, 2012; Kahl et al., 2017; Weedon et al., 2009). 

Our results can resolve these discrepancies by demonstrating that 
wood density may not control decay rates per se, but rather how 
decay rates change through time (i.e. Figure 1). Because the wood 
density effect depended on experimental timescale, we would 
expect that studies that involve more cumulative mass loss are 
more likely to recover a positive density‐decay correlation than 
studies which are much shorter. Because wood density governs so 
many aspects of tree growth, competition, stress tolerance, and 
carbon storage (Cornwell et al., 2009), resolving how it relates to 
decay is essential for accurate forest carbon modelling and will 
require experiments that analyse mass loss at multiple time points 
for contrasting species using more flexible decay models than the 
standard NegExp.

Wood density was not the only trait with a timescale‐dependent 
effect. Vessel diameter also changed the shape of the decay curve but 
in the opposite direction. Together, vessel diameter and wood density 
may mediate biological feedbacks related to substrate permeability 
and decomposability. Denser wood with narrow vessels may have 
more inaccessible internal cavities that breakdown faster as decay in‐
creases microbial access, microscale surface area to volume, and de‐
fensive compound leaching (Cornwell et al., 2009; Harmon et al., 1986). 
This interpretation is consistent with the results of an experiment an‐
alysing monthly mass loss across almost 3 years of decay among 32 
tree species in Borneo, where species with initially more permeable 
wood decayed faster than exponential while those with dense wood 
decomposed more slowly (Mori et al., 2014). Further experiments 
could explore underlying mechanisms by connecting changes in bulk 
wood properties with variation in microbial community assembly and 
function.

Compared to wood traits, candidate environmental drivers had 
weak or unexpected effects. Differences in soil chemistry and tem‐
perature between habitats strongly influence living tree community 
structure (Spasojevic et al., 2014), but only soil temperature weakly 
slowed decay in the full‐time series. This unexpected result conflicts 
with expectations based on temperature dependence of enzyme ki‐
netics, but is consistent with at least one other experiment which 
found that leaves in warmer sites decayed more slowly (Fravolini 
et al., 2016). It is possible that slightly slower decay for species in 
warmer sites reflects physical hardening of exposed wood as has 
been noted at this site (Oberle et al., 2014). Furthermore, the tem‐
perature gradients present at our site (<1°C) are much smaller than 
gradients observed in studies that examine broad biogeographic 
gradients in wood decay (Adair et al., 2008; Bradford et al., 2017). 
Nevertheless, variation in initial wood traits more strongly influ‐
enced wood decay than environmental variability, which is consis‐
tent with global patterns (Hu et al., 2018; Weedon et al., 2009).

4.2 | Long‐term data, frequent sampling, and 
flexible models make more accurate ecosystem 
projections

Consistent with our second hypothesis, accounting for dynamic 
wood trait effects generated more accurate predictions. In the 
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validation experiment, the least accurate predictions were based 
on short‐term results, when trait effects were strongest. More ac‐
curate predictions came from a much weaker relationship between 
initial log(lignin%) and long‐term decay, although this relationship 
was slightly biased towards lower mass loss values. Overall, models 
based on more traits and longer time series were more accurate and 
unbiased, predicting as much as 66% of the observed variation in 
mass loss. For applications that require more accurate predictions 
of long‐term decay dynamics, particularly in systems where wood 
decays slowly or provides particularly valuable services, models in‐
formed by experiments with repeated harvests and multiple candi‐
date drivers may provide the needed accuracy.

The ultimate goal of scaling up from experiments to ecosystem 
dynamics requires assessing model predictions in natural systems. 
Our results provide the first direct connection between experi‐
mental wood decay and naturally recruited deadwood structure 
across a heterogeneous landscape. We note that many factors 
could influence the probability of encountering a dead stem with 
a tag, including varying tree mortality, trait‐based tag shedding, 
and overall decay rates obscuring the presence of stems. Even 
so, we found that the distribution of deadwood residence times 
in the tagged deadwood pool was very similar to the distribution 
of residence times for corresponding species in the living wood 
pool. Furthermore, estimated residence time did not predict 
whether a tag that had gone missing from a living tree was re‐
covered on WD. Both results suggest that the tagged deadwood 
pool is unbiased with respect to decay rates even though tagged 
deadwood tended to be relatively intact. Within this broadly rep‐
resentative subset of deadwood, we compared how accurately 
different temporal sampling schemes and decay models predicted 
key aspects of deadwood structure. We found that long‐term data 
with timescale‐dependent effects were necessary for accurate 
predictions. Dead trees with quickly decomposing wood, as deter‐
mined using a time‐varying Weibull model, were more somewhat 
more likely to be broken, which is consistent with an analysis of 
standing dead tree fall across the eastern United States, where 
wood decay resistance was among the most important predictors 
of snag half‐life (Oberle et al., 2018). While a model with Weibull 
residence times only marginally outperformed the null model for 
deadwood position, Weibull residence times provided a much 
more accurate projection of WD DC than residence times derived 
from any other model. Short‐term data and simple models failed 
to predict variation in tagged deadwood DC, with major implica‐
tions for scaling up experimental results because decay classifi‐
cation is the basis for estimating deadwood C content in the US 
National Forest Inventory (Harmon, Woodall, Fasth, & Sexton, 
2008). While long‐term data and a flexible model were necessary 
for accurate predictions, other factors can contribute to variation 
in deadwood structure observed at a particular point in time. For 
example, it is possible that we recovered relatively intact wood 
that had longer estimated residence times because the same traits 
that control decay also control tree mortality. To limit this possi‐
bility, we excluded observations of Amelanchier arborea, a species 

with relatively slowly decomposing wood, because it was severely 
impacted by drought and difficult to be classified as dead. In the 
future, resolving this ambiguity will require more comprehensive 
forest C models that include trait‐based mortality and wood decay.

By finding that timescale influences how wood traits influence 
decay, our study emphasizes how short‐term studies and corre‐
spondingly simple empirical models can misrepresent long‐term 
ecosystem dynamics. In a recent review of litter decay experi‐
ments in the boreal zone, very few (11%) lasted long enough to 
capture major changes in decay rates that emerged after 12 years 
(Moore et al., 2017). While short‐term data may be sufficient for 
testing hypotheses about factors that influence initial decay rate 
variation, they may rush to conclusions about transient mecha‐
nisms. More importantly, analyses that cannot accommodate dy‐
namic decay rates may distort the roles for underlying drivers and 
produce radically different ecosystem projections. With global 
change driving forest dieback, understanding what controls wood 
decay has never been more urgent. When it comes to accurately 
representing wood decay in earth system models, our results show 
that long‐term experiments are worth the wait.
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